• Title/Summary/Keyword: Li-Ion battery energy

Search Result 259, Processing Time 0.024 seconds

Electrochemical Performance of AlF3-Coated LiV3O8 for Aqueous Rechargeable Lithium Ion Batteries

  • Tron, Artur;Kang, Hyunchul;Kim, Jinho;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • In aqueous rechargeable lithium ion batteries, $LiV_3O_8$ exhibits obviously enhanced electrochemical performance after $AlF_3$ surface modification owing to improved surface stability to fragile aqueous electrolyte. The cycle life of $LiV_3O_8$ is significantly enhanced by the presence of an $AlF_3$ coating at an optimal content of 1 wt.%. The results of powder X-ray diffraction, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, and galvanostatic charge-discharge measurements confirm that the electrochemical improvement can be attributed mainly to the presence of $AlF_3$ on the surface of $LiV_3O_8$. Furthermore, the $AlF_3$ coating significantly reduces vanadium ion dissolution and surface failure by stabilizing the surface of the $LiV_3O_8$ in an aqueous electrolyte solution. The results suggest that the $AlF_3$ coating can prevent the formation of unfavorable side reaction components and facilitate lithium ion diffusion, leading to reduced surface resistance and improved surface stability compared to bare $LiV_3O_8$ and affording enhanced electrochemical performance in aqueous electrolyte solutions.

Implementation of Battery Management System for Li-ion Battery Considering Self-energy Balancing (셀프에너지 밸런싱을 고려한 리튬이온전지의 Battery Management System 구현)

  • Kim, Ji-Myung;Lee, Hu-Dong;Tae, Dong-Hyun;Ferreira, Marito;Park, Ji-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.585-593
    • /
    • 2020
  • Until now, 29 fire accidents have occurred; 22 of them were caused by the interconnection of renewable energy sources that occurred during the rest period after the lithium-ion battery had been fully charged regardless of the seasons. The fire accidents of ESS were attributed to thermal runaway due to the overcharging of a few cells with the phenomenon of self-energy balancing, which is unintentional current flow from cells with a high SOC to the low cells if the SOC condition of each cell connected in parallel is different. Therefore, this paper proposes a novel configuration and operation algorithm of the BMS to prevent the self-energy balancing of ESS and presents a hybrid SOC estimation algorithm. From the test results of the self-energy balancing phenomenon between aging and normal cells based on the proposed algorithm and BMS, it was confirmed the possibility of self-energy balancing, which is unintentional current flow from cells with a high SOC to cells with a low SOC. In addition, the proposed configuration of the BMS is useful and practical to improve the safety of lithium-ion batteries because the BMS can reliably disconnect a parallel connection of the cells if the self-energy balancing current becomes excessively high.

Performances of Li-Ion Batteries Using LiNi1-x-yCoxMnyO2 as Cathode Active Materials in Frequency Regulation Application for Power Systems

  • Choi, Jin Hyeok;Kwon, Soon-Jong;Lim, Jungho;Lim, Ji-Hun;Lee, Sung-Eun;Park, Kwangyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.461-466
    • /
    • 2020
  • There are many application fields of electrical energy storage such as load shifting, integration with renewables, frequency or voltage supports, and so on. Especially, the frequency regulation is needed to stabilize the electric power system, and there have to be more than 1 GW as power reserve in Korea. Ni-rich layered oxide cathode materials have been investigated as a cathode material for Li-ion batteries because of their higher discharge capacity and lower cost than lithium cobalt oxide. Nonetheless, most of them have been investigated using small coin cells, and therefore, there is a limit to understand the deterioration mode of Ni-rich layered oxides in commercial high energy Li-ion batteries. In this paper, the pouch-type 20 Ah-scale Li-ion full cells are fabricated using Ni-rich layered oxides as a cathode and graphite as an anode. Above all, two test conditions for the application of frequency regulation were established in order to examine the performances of cells. Then, the electrochemical performances of two types of Ni-rich layered oxides are compared, and the long-term performance and degradation mode of the cell using cathode material with high nickel contents among them were investigated in the frequency regulation conditions.

Characteristics of Salt Concentration in Electrolyte of Lithium Ion Battery According to Sudden Temperature Change (급격한 온도 변화에 따른 리튬 이온 배터리의 전해질 내 염 농도 분포 특성)

  • Jang, Kyung Min;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.11-15
    • /
    • 2017
  • Lithium-ion batteries are widely used, from lightweight to energy-intensive, from small devices to large ESSs. However, it is sensitive to the surrounding environment and there is a change in performance depending on the temperature change. In this study, the temperature dependence of the charge / discharge characteristics of the battery is shown through simulation and the distribution of the salt concentration in the electrolyte is observed when the sudden temperature change is applied.

  • PDF

Research Trend on Performance Diagnosis and Restoration Technology of Waste Lithium Ion Battery for Energy Storage Systems (에너지저장장치용 폐리튬이온배터리 성능 진단 및 복원 기술동향)

  • Lee, Kiyoug;Choi, Jinsub;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.290-296
    • /
    • 2019
  • Lithium-ion batteries are one of the most interesting devices in a number of energy storage systems. In particular, the usage of energy storage devices is increasing due to an increase in demand for renewable energy as a distributed power supply source, stable supply of electric power, and expansion of electric vehicles. Of late, the recycling and restoration technology of waste lithium ion batteries due to the increase in its usage amount as the energy storage system is a socially and economically important research field. In this review, we intend to describe the performance diagnosis, recycling or restoration technology of lithium ion battery and its potential development.

Development of Small-capacity PCS for Personal Mobility Utilization (Personal Mobility 활용을 위한 소용량 PCS 개발)

  • Sun-Pil Kim;Kuk-Hyun Kim;Chang-Ho Lee;Le Tuan Vu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • This study conducted a study on a small-capacity PCS using lithium-ion batteries used in personal mobility. Most of the batteries in Personal Mobility only charge with external chargers and are used only as mobile energy sources. However, this paper aims to charge the battery of PM using PV and system power or to use the charged power as a stand-alone power supply. The developed PCS can be operated as a two-channel battery charger/discharger, a battery charger using solar power, and a stand-alone solar inverter depending on the operation method. The validity of the manufactured small-capacity PCS was verified through experiments.

Study on the Dominant Film-Forming Site Among Components of Li(Ni1/3Co1/3Mn1/3)O2 Cathode in Li-ion Batteries

  • Kim, Ke-Tack;Kam, Dae-woong;Nguyen, Cao Cuong;Song, Seung-Wan;Kostecki, Robert
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2571-2576
    • /
    • 2011
  • Surface film formation on $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$ cathodes upon oxidation of electrolyte during electrochemical cycling was investigated. Information on the important factors for film formation on the cathode can facilitate the design of additives that improve the properties of the cathode. Pyrazole is added to the electrolyte because it is readily oxidized to form a surface film on the cathode. The results of differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR) showed that the active material played a dominant role in the interfacial film formation with the electrolyte. Carbon black played a negligible role in the surface film formation.

Electrochemical Characteristics of Sn Added Li4Ti5O12 as an Anode Material (Sn이 첨가된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Jeong, Choong-Hoon;Kim, Sun-Ah;Cho, Byung-Won;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • $Li_4Sn_xTi_{5-x}O_{12}$ was manufactured by high energy ball milling (HEBM) and used as an anode material for lithium ion battery. Various amount of $SnO_2$was added to $Li_4Ti_5O_{12}$ and heated at different temperatures. The purpose of this research was to see the effect of $SnO_2$ addition into $Li_4Ti_5O_{12}$. Manufactured samples were analyzed by TGA, XRD, SEM, PSA. Battery cycler was used to test the charge/discharge properties of active materials. Heat treatment temperature of $800^{\circ}C$ was needed to make a stable structure of $Li_4Sn_xTi_{5-x}O_{12}$ and the particle size distribution was $0.2{\sim}0.6\;{\mu}m$. Charge/discharge process was repeated for 50 cycles at room temperature. The initial capacity was 168mAh/g and the voltage plateau was observed at 1.55V(Li/$Li^+$).

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.