• Title/Summary/Keyword: Li reduction

Search Result 738, Processing Time 0.026 seconds

A Relation between the Electrochemical Behaviors and Morphology of Co3O4 and Ni-Co3O4 Composites as Anode Materials for Li Ion Secondary Batteries (리툼 이차 전지용 Co3O4 및 Ni-Co3O4 복합물의 전기화학적 특성 및 표면 형상의 관계)

  • Kang, Yong-Mook;Lee, Yong-Ju;Song, Min-Sang;Park, Min-Sik;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.217-228
    • /
    • 2003
  • Li 이차 전지 음극용 활물질인 $Co_3O_4$의 초기 충방전 효율을 향상시키기 위해 chemical reduction method나 mechanical milling법을 이용하여 $Co_3O_4$에 Ni을 첨가하여 $Ni-Co_3O_4$, 복합물을 제조하였다. 그 결과 초기 충방전 효율이 약 69%에 불과한 $Co_3O_4$에 비해 mechanical milling법을 이용하여 제조된 $Ni-Co_3O_4$ 복합물은 약 79%이상의 대폭 향상된 초기 충방전 효율 특성을 나타내었다. 하지만 chemical reduction method를 이용하여 제조된 $Ni-Co_3O_4$ 복합물은 약 71%의 초기 충방전 효율 특성만을 나타내었다. SEM 분석을 통해 각 물질의 표면 형상을 관찰한 결과 mechanical milling법과 chemical reduction method를 통해 제조된 $Ni-Co_3O_4$ 복합물에서는 $Co_3O_4$ 표면에 분포된 Ni의 균일성의 차이가 존재하였다. $Co_3O_4$$Li_2O$의 분해, 형성에 의해 충방전되고 Ni이 $Li_2O$의 분해를 촉진시키는 효과를 가지고 있음을 고려할 때 이러한 균일성의 차이는 결국 Ni 과 $Co_3O_4$ 사이의 접촉면적의 차이로 이어져 $Ni-Co_3O_4$ 복합물의 초기 충방전 효율 특성이 그 제조 방법에 따라 달라지는 것으로 보인다.

Admittance Spectroscopic Analysis of Organic Light Emitting Diodes with a LiF Buffer Layer

  • Kim, Hyun-Min;Park, Hyung-June;Yi, Jun-Sin;Oh, Se-Myoung;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1014-1017
    • /
    • 2006
  • Admittance Spectroscopic analysis was applied to study the effect of LiF buffer layer and to model the equivalent circuit for $ITO/Alq_3/LiF/Al$ device structure. The admittance spectroscopic analysis of the devices with LiF layer shows reduction in contact resistance $(R_C)$, parallel resistance $(R_P)$ and increment in parallel capacitance $(C_P)$.

  • PDF

Generalization of Fisher′s linear discriminant analysis via the approach of sliced inverse regression

  • Chen, Chun-Houh;Li, Ker-Chau
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.193-217
    • /
    • 2001
  • Despite of the rich literature in discriminant analysis, this complicated subject remains much to be explored. In this article, we study the theoretical foundation that supports Fisher's linear discriminant analysis (LDA) by setting up the classification problem under the dimension reduction framework as in Li(1991) for introducing sliced inverse regression(SIR). Through the connection between SIR and LDA, our theory helps identify sources of strength and weakness in using CRIMCOORDS(Gnanadesikan 1977) as a graphical tool for displaying group separation patterns. This connection also leads to several ways of generalizing LDA for better exploration and exploitation of nonlinear data patterns.

  • PDF

Direct Transformation of Carboxylic Acids into Aldehydes through Acyloxy-9-borabicyclo[3.3.1]nonane$^1$

  • Cha Jin Soon;Oh Se Yeon;Lee Kwang Woo;Yoon Mal Sook;Lee Jae Cheol;Kim Jin Euog
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.48-52
    • /
    • 1988
  • New methods for the direct reduction of carboxylic acids to aldehydes through the treatments of B-acyloxy-9-borabicyclo[3.3.1]nonane (acyloxy-9-BBN) with tert-butyllithium and 9-borabicyclo[3.3.1]nonane or with lithium 9-boratabicyclo[3.3.1]nonane (Li 9-BBNH) are described. Both these systems provide the corresponding aldehydes from various carboxylic acids in high yields. A mechanism for the recuction through stepwise treatment of acyloxy-9-BBN with tert-butylithium and 9-BBN, which seems to involve the hydride migration through 9-BBN, is proposed and discussed in connection with the reduction through treatment of acyloxy-9-BBN with Li 9-BBNH.

Effect of the Composition of a Reduced Fuel on the Concentration Change of UCl3 in the Electrorefiner (금속전환체 조성의 전해정련 전해조 UCl3 농도변화에 대한 영향)

  • Paek, Seungwoo;Lee, Chang-Hwa;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.347-353
    • /
    • 2019
  • The composition of the reduced fuel produced in the electrolytic reduction process of pyroprocessing affects the concentration change of $UCl_3$, an important operating variable of the electrorefining process. In this study, we examined the concentration change of $UCl_3$ in the electrorefiner according to the content of TRU and RE elements in the reduced fuel and the concentration of $Li_2O$ introduced in the electrorefiner accompanied with the reduced fuel. Considering only the TRU and RE elements, the concentration of $UCl_3$ decreased with increasing the number of electrorefining operation batch. In order to operate one campaign (20 batches) of electrorefining process, it was found that additional injection of $UCl_3$ should be conducted more than 3 times. On the other hand, the concentration of $UCl_3$ in the electrorefiner changed significantly depending on the concentration of $Li_2O$ and, accordingly the number of operable electrorefining batches decreased rapidly, showing that the concentration of $Li_2O$ is an important operating variable in electrorefining. Therefore, the results of this study show that to maintain the concentration of $UCl_3$ in the electrorefiner, the operation mode should be set by taking into account the effect of $Li_2O$ as well as the TRU and RE elements contained in the reduced fuel.

Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed (차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법)

  • Lee, Sanghoon;Lee, Dongkyu;Choi, Pyung;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.

Thermal Release of LiCl Waste Salt from Pyroprocessing (파이로프로세싱 발생 LiCl염폐기물의 열발생)

  • Kim, Jeong-Guk;Kim, Kwang-Rag;Kim, In-Tae;Ahn, Do-Hee;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • The decay heat of Cs and Sr contained in a LiCl waste salt, generated from an electrolytic reduction process in pyroprocessing of spent nuclear fuel, has been calculated. The calculation has been carried out under some assumptions that most of the LiCl waste is purified and recycled to main process, and the residual is fabricated to make a waste form. As a result, the decay heat from daughter nuclides such as Ba and Y seems to be maximum 4.6 times higher than that from their parent nuclides such as Cs and Sr. The thermal release from Cs and Sr in the LiCl waste is the maximum around the first one month, so an cooling system operation for some time at the beginning would be suggested to control a rapid increase in the temperature of the LiCl waste salt.

  • PDF

Preparation and electrochemical property of $LiMn_2O_4$cathode active material by Sol-Gel method using water as solvent (물을 용매로 이용한 Sol-Ge1법에 의한 $LiMn_2O_4$ 정극 활물질의 제조와 전기화학적 특성)

  • 정인성;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.175-178
    • /
    • 1998
  • LiMn$_2$O$_4$-based spinels has been studied extensively as positive electrode materials for rechargeable lithium and lithium ion batteries. We describe here that LiMn$_2$O$_4$ cathode active materials is preparated by sol-gel process using water as solvent, which often yields inorganic oxides of excellent phase purity and well-controlled stoichiometry. Using this process, it has been possible to synthesize phase-pure crystalline spinel LiMn$_2$O$_4$ by calcining the appropriate precursors in air at 80$0^{\circ}C$ for several hours. The influence of different time have also been explored. LiMn$_2$O$_4$ preparated in the present study exhibit the single phase of cubic and active reaction at 400 ~ $600^{\circ}C$. Electrochemical studies show that the this method- synthesized materials appear to present reversible oxidation and reduction reactions at 3.0V ~ 4.5V and cycle stability during 50 cycle.

  • PDF

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Crystal Phase Changes of Zeolite in Immobilization of Waste LiCI Salt

  • KIM Jeong-Guk;LEE Jae-Hee;Lee Sung-Ho;KIM In-Tae;KIM Joon-Hyung;KIM Eung-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.176-181
    • /
    • 2005
  • The electrolytic reduction process and the electrorefining process, which are being developed at the Korea Atomic Energy Research Institute (KAERI), are to generate molten waste salts such as LiCI salt and LiCI-KCI eutectic salt, respectively. Our goal in waste salt management is to minimize a total waste generation and fabricate a very low­leaching waste form such as a ceramic waste form. Zeolite has been known to one of the most desirable media to immobilize waste salt, which is water soluble and easily radiolyzed. Zeolite can be also used to the removal of fission products from the spent waste salt. Molten LiCI salt is mixed with zeolite A at $650^{\circ}C$ to form a salt-loaded zeolite, and then thermally treated in above $900^{\circ}C$ to become an immobilized product with crystal phase of $Li_{8}Cl_{2}$-Sodalite. In this work, a crystal phase changes of immobilization medium, zeolite, during immobilization of molten LiCI salt using zeolite A is introduced.

  • PDF