• 제목/요약/키워드: Li reduction

검색결과 738건 처리시간 0.029초

LiCl-KCl 고온 용융염 내 UCl3 및 GdCl3의 전기화학적 거동 연구 (Electrochemical Behavior of UCl3 and GdCl3 in LiCl-KCl Molten Salt)

  • 민슬기;배상은;박용준;송규석
    • 전기화학회지
    • /
    • 제12권3호
    • /
    • pp.276-281
    • /
    • 2009
  • 본 연구는 고온화학공정에 사용할 전기화학적 센서 기술 개발의 사전 연구로서 고온 LiCl-KCl 공융염에 $UCl_3$$GdCl_3$를 녹여 $U^{3+}$$Gd^{3+}$의 전기화학 반응을 조사하였다. $U^{3+}$는 고온 LiCl-KCl 용융염내에서 -0.2V/-0.35 V에서 $U^{4+}$로의 산화/환원반응의, -1.51 V/-1.35 V에서 전착/해리 반응전류의 피크를 나타내었다. $Gd^{3+}$의 경우 -2.15 V에서 전착반응 피크를, -1.9 V에서 산화해리전류 피크를 나타내었다. $U^{3+}$$Gd^{3+}$의 혼합 고온 용융염에서는 $Gd^{3+}$의 전착 피크가 양의 전위로 이동하였다. 일정전류법의 결과는 시간이 지남에 따라 전위값이 일정해졌으며 그 전위값은 전해질 내 반응물의 환원전위값과 일치하였다. 노멀펄스전위법과 직각파전위법은 두 원소의 정성분석을 위한 좋은 전기화학적 방법론임을 보였으며 특히 노멀펄스전위곡선을 미분한 결과는 사용된 다른 방법에 비해 반응전류의 피크분리가 잘 일어났다.

Sensor placement for structural health monitoring of Canton Tower

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.313-329
    • /
    • 2012
  • A challenging issue in design and implementation of an effective structural health monitoring (SHM) system is to determine where a number of sensors are properly installed. In this paper, research on the optimal sensor placement (OSP) is carried out on the Canton Tower (formerly named Guangzhou New Television Tower) of 610 m high. To avoid the intensive computationally-demanding problem caused by tens of thousands of degrees of freedom (DOFs) involved in the dynamic analysis, the three dimension finite element (FE) model of the Canton Tower is first simplified to a system with less DOFs. Considering that the sensors can be physically arranged only in the translational DOFs of the structure, but not in the rotational DOFs, a new method of taking the horizontal DOF as the master DOF and rotational DOF as the slave DOF, and reducing the slave DOF by model reduction is proposed. The reduced model is obtained by IIRS method and compared with the models reduced by Guyan, Kuhar, and IRS methods. Finally, the OSP of the Canton Tower is obtained by a kind of dual-structure coding based generalized genetic algorithm (GGA).

Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Jeon, Young-Deok;Lee, Ho-Joon;Lee, Soo Jae;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권2호
    • /
    • pp.90-94
    • /
    • 2012
  • A simple and sensitive electrochemical sensor for simultaneous and quantitative detection of ranitidine (RT) and metronidazole (MT) was developed, based on a poly(thionine)-modified anodized glassy carbon electrode (PTH/GCE). The modified electrode showed the excellent electrocatalytic activity towards the reduction of both RT and MT in 0.1M phosphate buffer solution (PBS, pH 7.0). The peak-to-peak separations (${\Delta}E_p$) for the simultaneous detection of RT and MT between the two reduction waves in CV and DPV were increased significantly from ca. 100 mV at anodized GCE, to ca. 550 mV at the PTH/GCE. The reduction peak currents of RT and MT were linear over the range from 35 to $500{\mu}M$ in the presence of 200 and $150{\mu}M$ of RT and MT, respectively. The sensor showed the sensitivity of 0.58 and $0.78{\mu}A/cm^2/{\mu}M$ with the detection limits (S/N = 3) of 1.5 and $0.96{\mu}M$, respectively for RT and MT.

PAPR Reduction Using Hybrid Schemes for Satellite Communication System

  • 김재명;조자빈;이호위;손성환
    • 한국위성정보통신학회논문지
    • /
    • 제3권2호
    • /
    • pp.48-53
    • /
    • 2008
  • In the future, satellite communication systems, such as ISDB in Japan and DVB in Europe, are required to support higher transmission date rate for providing multimedia services including HDTV, high rate data communication etc. Considering the effectiveness of OFDM technique in efficient usage of frequency bandwidth and its robustness to the multi-path fading, several OFDM based standards have been proposed for satellite communication. However, the problem of high Peak to Average Power Ratio is one of the main obstacles for the implementation of OFDM based system. Many PAPR reduction schemes have been proposed for OFDM systems. Among these, the partial transmit sequences (PTS) is attractive as they obtain better PAPR property by modifying OFDM signals without distortion. In this paper, considering the complexity issue, we present a simplified minimum maximum (minimax) criterion and Sub-Optimal PTS algorithm to optimize the phase factor. This algorithm can be dynamically made tradeoff`f between performance and complexity on demand. In addition, we integrate guided scrambling (GS) with this method. Simulation in multiple antenna based OFDM system proves that the proposed Hybrid schemes can get much more PAPR reduction and do not require transmission of side information (SI). Thus it is helpful when implementing OFDM technique in satellite communication system.

  • PDF

An adaptive nonlocal filtering for low-dose CT in both image and projection domains

  • Wang, Yingmei;Fu, Shujun;Li, Wanlong;Zhang, Caiming
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.113-118
    • /
    • 2015
  • An important problem in low-dose CT is the image quality degradation caused by photon starvation. There are a lot of algorithms in sinogram domain or image domain to solve this problem. In view of strong self-similarity contained in the special sinusoid-like strip data in the sinogram space, we propose a novel non-local filtering, whose average weights are related to both the image FBP (filtered backprojection) reconstructed from restored sinogram data and the image directly FBP reconstructed from noisy sinogram data. In the process of sinogram restoration, we apply a non-local method with smoothness parameters adjusted adaptively to the variance of noisy sinogram data, which makes the method much effective for noise reduction in sinogram domain. Simulation experiments show that our proposed method by filtering in both image and projection domains has a better performance in noise reduction and details preservation in reconstructed images.

Investigation of dynamic P-Δ effect on ductility factor

  • Han, Sang Whan;Kwon, Oh-Sung;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.249-266
    • /
    • 2001
  • Current seismic design provisions allow structures to deform into inelastic range during design level earthquakes since the chance to meet such event is quite rare. For this purpose, design base shear is defined in current seismic design provisions as the value of elastic seismic shear force divided by strength reduction factor, R (${\geq}1$). Strength reduction factor generally consists of four different factors, which can account for ductility capacity, overstrength, damping, and redundancy inherent in structures respectively. In this study, R factor is assumed to account for only the ductility rather than overstrength, damping, and redundancy. The R factor considering ductility is called "ductility factor" ($R_{\mu}$). This study proposes ductility factor with correction factor, C, which can account for dynamic P-${\Delta}$ effect. Correction factor, C is established as the functional form since it requires computational efforts and time for calculating this factor. From the statistical study using the results of nonlinear dynamic analysis for 40 earthquake ground motions (EQGM) it is shown that the dependence of C factor on structural period is weak, whereas C factor is strongly dependant on the change of ductility ratio and stability coefficient. To propose the functional form of C factor statistical study is carried out using 79,920 nonlinear dynamic analysis results for different combination of parameters and 40 EQGM.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Policy implication of nuclear energy's potential for energy optimization and CO2 mitigation: A case study of Fujian, China

  • Peng, Lihong;Zhang, Yi;Li, Feng;Wang, Qian;Chen, Xiaochou;Yu, Ang
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1154-1162
    • /
    • 2019
  • China is undertaking an energy reform from fossil fuels to clean energy to accomplish $CO_2$ intensity (CI) reduction commitments. After hydropower, nuclear energy is potential based on breadthwise comparison with the world and analysis of government energy consumption (EC) plan. This paper establishes a CI energy policy response forecasting model based on national and provincial EC plans. This model is then applied in Fujian Province to predict its CI from 2016 to 2020. The result shows that CI declines at a range of 43%-53% compared to that in 2005 considering five conditions of economic growth in 2020. Furthermore, Fujian will achieve the national goals in advance because EC is controlled and nuclear energy ratio increased to 16.4% (the proportion of non-fossil in primary energy is 26.7%). Finally, the development of nuclear energy in China and the world are analyzed, and several policies for energy optimization and CI reduction are proposed.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성 (Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material)

  • 정민지;박지용;이종대
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.16-21
    • /
    • 2016
  • 실리콘의 부피팽창과 낮은 전기전도도를 개선하기 위하여 Silicon/Carbon/CNT 복합체를 제조하였다. Silicon/Carbon/CNT 합성물은 SBA-15를 합성한 후, 마그네슘 열 환원 반응으로 Silicon/MgO를 제조하여 Phenolic resin과 CNT를 첨가하여 탄화하는 과정을 통해 합성하였다. 제조된 Silicon/Carbon/CNT 합성물은 XRD, SEM, BET, EDS를 통해 특성을 분석하였다. 본 연구에서는 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 CNT 첨가량에 따른 전기화학적 효과를 조사하였다. $LiPF_6$ (EC:DMC:EMC=1 :1 :1 vol%) 전해액에서 Silicon/Carbon/CNT 음극활물질을 사용하여 제조한 코인셀은 CNT 함량이 7 wt% 일 때 1,718 mAh/g으로 높은 용량을 나타내었다. 코인셀의 사이클 성능은 CNT 첨가량이 증가할수록 개선되었다. 11 wt%의 CNT를 첨가한 Silicon/Carbon/CNT 음극은 두 번째 사이클 이후 83%의 높은 용량 보존율을 나타냄을 알 수 있었다.