• Title/Summary/Keyword: Li absorption efficiency

Search Result 47, Processing Time 0.031 seconds

A Small Star Forming Region in the Molecular Cloud MBM 110

  • Sung, Hwankyung;Bessell, M.S.;Song, Inseog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.51.3-51.3
    • /
    • 2018
  • MBM 110 is one of the molecular clouds at high Galactic latitude discovered by Magnani et al., and is one of a dozen cometary clouds in the Orion-Eridanus superbubble. We have conducted optical photometry and spectroscopy for a comprehensive study of the region. Recently released Gaia DR2 astrometric data as well as WISE mid-infrared data were used for the complete census of member stars. We select 17 member stars with $H{\alpha}$ emission and/or Li absorption. The total mass of stars in the region is only about $16M{\odot}$. We found that the star formation efficiency in the region is less than 5%. We discuss the origin of the cloud and the star formation history in MBM 110.

  • PDF

1$\times$16 DMUX Using Holographic Volume Gratings (홀로그래픽 부피격자를 이용한 1$\times$16 DMUX)

  • Lee, Kwon-Yeon;An, Jun-Won;Kim, Nam;Lee, Hyun-Jae;Seo, Wan-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.31-38
    • /
    • 2000
  • We propose a new photorefractive demultiplexer(DMUX) which can select the 16 channel signal in WDM optical communication system using the wavelength selectivity and the demultiplexing property through multiple recording of holographic volume grating in photorefractive Fe-LiNbO$_{3}$ crystal. For the multiple writing of the 16 channels having uniform diffraction efficiency, the rotation multiplexing technique and the exposure time schedule are used. Designed DMUX has the 16 channels with 0.5nm spacing between 670nm and 677.5nm and the bandwidth of 0.16nm. From the experimental results, the diffraction efficiency of each channel is 8.3 $\pm$0.62%, the optical loss from fresnel reflection and absorption on the crystal is 0.4cm-1, the 3㏈ bandwidth is 0.16 $\pm$0.005nm and the channel spacing is 0.46~0.5nm.

  • PDF

Compound-Type Hybrid Energy Storage System and Its Mode Control Strategy for Electric Vehicles

  • Wang, Bin;Xu, Jun;Cao, Binggang;Li, Qiyu;Yang, Qingxia
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.849-859
    • /
    • 2015
  • This paper proposes a novel compound-type hybrid energy storage system (HESS) that inherits the unique advantages of both battery/supercapacitor (SC) and the SC/battery HESSs for electric vehicles (EVs). Eight operation modes are designed to match this system. A mode control strategy is developed for this HESS on the basis of these modes, and five classes of operation modes are established to simplify this strategy. The mode control strategy focuses on high operating efficiency and high power output. Furthermore, the compound-type HESS is designed such that the SC is the main priority in braking energy absorption. Thus, this HESS can operate efficiently and extend battery life. Simulation results also show that the compound-type HESS can not only supply adequate power to the motor inverter but can also determine suitable operation modes in corresponding conditions. Experimental results demonstrate that this HESS can extend battery life as well. The overall efficiency of the compound-type HESS is higher than those of the battery/SC and the SC/battery HESSs.

A modal approach for the efficient analysis of a bionic multi-layer sound absorption structure

  • Wang, Yonghua;Xu, Chengyu;Wan, Yanling;Li, Jing;Yu, Huadong;Ren, Luquan
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.249-266
    • /
    • 2016
  • The interest of this article lies in the proposition of using bionic method to develop a new sound absorber and analyze the efficient of this absorber in a ski cabin. Inspired by the coupling absorption structure of the skin and feather of a typical silent flying bird - owl, a bionic coupling multi-layer structure model is developed, which is composed of a micro-silt plate, porous fibrous material and a flexible micro-perforated membrane backed with airspace. The finite element simulation method with ACTRAN is applied to calculate the acoustic performance of the multi-layer absorber, the vibration modal of the ski cabin and the sound pressure level (SPL) near the skier's ears before and after pasting the absorber at the flour carpet and seats in the cabin. As expected, the SPL near the ears was significantly reduced after adding sound-absorbing material. Among them, the model 2 and model 5 showed the best sound absorption efficiency and the SPL almost reduced 5 dB. Moreover, it was most effctive for the SPL reduction with full admittance configuration at both the carpet and the seats, and the carpet contribution seems to be predominant.

Synthesis and Characterization of Red Electrophosphorescent Polymers Containing Pendant Iridium(III) Complex Moieties

  • Xu, Fei;Mi, Dongbo;Bae, Hong Ryeol;Suh, Min Chul;Yoon, Ung Chan;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2609-2615
    • /
    • 2013
  • A series of fluorene-carbazole copolymers containing the pendant phosphor chromophore $Ir(absn)_2(acac)$ (absn: 2-(1-naphthyl)benzothiazole; acac: acetylacetone) were designed and synthesized via Yamamoto coupling. In the film state, these copolymers exhibited absorption and emission peaks at approximately 389 and 426 nm, respectively, which originated from the fluorene backbone. However, in electroluminescent (EL) devices, a significantly red-shifted emission at approximately 611 nm was observed, which was attributed to the pendant iridium(III) complex. Using these copolymers as a single emission layer, polymer light-emitting devices with ITO/PEDOT:PSS/polymer:DNTPD/TmPyPb/LiF/Al configurations exhibited a saturated red emission at 611 nm. The attached iridium(III) complex had a significant effect on the EL performance. A maximum luminous efficiency of 0.85 cd/A, maximum external quantum efficiency of 0.77, maximum power efficiency of 0.48 lm/W, and maximum luminance of 883 $cd/m^2$ were achieved from a device fabricated with the copolymer containing the iridium(III) complex in a 2% molar ratio.

Synthesis of New Blue OLEDs with Biphenyl Structure and Relationship between EL Efficiency and Drift Mobility (Biphenyl 구조를 가진 새로운 청색 유기 발광 재료의 합성 및 EL효율과 이동도의 관계에 대한 연구)

  • Lee, Tae-Hoon;Ryu, Jung-Yi;Kim, Tae-Hoon;Nam, Jang-Hyun;Park, Seong-Soo;Son, Se-Mo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.179-198
    • /
    • 2004
  • Organic electroluminescent devices are light-emitting diodes in which the active materials consist entirely of organic materials. Recently, many fluorescent organic materials have been reported and the study on synthesis and application of new organic light-emitting materials has been demanded. This paper reports the optical and electrical characteristics of OLEDs using novel polymers containing biphenyl structure. First, Optical properties of novel light-emitting biphenyl derivatives doped with poly(9-vinyl carbazole)(PVK) and emitted blue, bluish green color, which is attributed to the overlap area between PL spectrum of host(PVK) and absorption spectra of guests(polymer). This is correspondent with F$\"{o}$rster energy transfer process in the blends. And, OLED devices were fabricated using poly (3,4-ethylenedioxy thiophene) (PEDOT) as a hole injection material and tris-(8-hydroxyquinoline) aluminum ($Alq_3$) as an electron transporting material. EL devices fabricated as ITO/PEDOT/PVK doped with biphenyl derivatives/$Alq_3$/Li:Al and I-V-L chatacteristics and emitting efficiency of EL devices were examined. Finally, the drift mobility of PVK doped with biphenyl derivatives and $Alq_3$ were measured by TOF technique varying applied electric field. EL efficiency was increased as the ratio of hole mobility of PVK doped with biphenyl derivatives and electron mobility of $Alq_3$ was close to one.

  • PDF

Preparation of 5-fluorouracil-loaded Nanoparticles and Study of Interaction with Gastric Cancer Cells

  • Fan, Yu-Ling;Fan, Bing-Yu;Li, Qiang;Di, Hai-Xiao;Meng, Xiang-Yu;Ling, Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7611-7615
    • /
    • 2014
  • Aims: To prepare 5-fluorouracil (5-Fu) nanoparticles with higher encapsulation efficiency and drug loading, and then investigate interaction with the SGC-7901 gastric cancer cell line. Materials and Methods: Prescription was optimized by orthogonal experiments, the encapsulation efficiency and loading capacity were tested by high-performance liquid chromatography, and inhibition of proliferation by 5-Fu nanoparticles and 5-Fu given to cells for 24, 48 and 72 hours was investigated by methyl thiazolyl tetrazolium assay (MTT). In addition, 5-Fu nanoparticles were labeled by fluorescein isothiocyanate (FITC), and absorption into cells was tested by flow cytometry. Results: The optimal conditions for preparation were concentrations of 5-Fu of 5mg/ml, of $CaCl_2$ of 60 mg/ml and of chitosan of 2 mg/ml. With a stirring speed of 1200rpm, encapsulation efficiency of 5-Fu nanoparticles was $55.4{\pm}1.10%$ and loading capacity was $4.22{\pm}0.14%$; gastric cancer cells were significantly inhibited by 5-Fu nanoparticles in a time and concentration dependent manner, and compared to 5-Fu with slower drug release, in a certain concentration range, inhibition with 5-Fu nanoparticles was stronger. 5-Fu nanoparticles were absorbed by the cells in line with the concentration. Conclusions: 5-Fu nanoparticles can inhibit growth of gastric cancer cells in vitro to a greater extent than with 5-Fu with good adsorption characteristics, supporting feasibility as a carrier.

Photocatalytic Degradation of Rhodamine B Using Carbon-Doped Carbon Nitride under Visible Light

  • Wang, Zhong-Li;Zhang, Zai-Teng;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.279-284
    • /
    • 2020
  • In this work, a carbon-doped carbon nitride photocatalyst is successfully synthesized through a simple centrifugal spinning method after heat treatment. The morphology and properties of the prepared photo catalyst are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectrophotometer (UV-vis), and specific surface area. The results show that the band gap of the prepared sample, g-CN-10 is 2.1 eV, is significantly lower than that of pure carbon nitride, 2.7 eV. As the amount of cotton candy increased, the absorption capacity of the prepared catalyst for visible light is significantly enhanced. In addition, the degradation efficiency of Rhodamine B (RhB) by sample g-CN-10 is 98.8 % over 2 h, which is twice that value of pure carbon nitride. The enhancement of photocatalytic ability is attributed to the increase of specific surface area after the carbon doping modifies carbon nitride. A possible photocatalytic degradation mechanism of carbon-doped carbon nitride is also suggested.

Synthesis and Characterization of Phenanthrene-substituted Fullerene Derivatives as Electron Acceptors for P3HT-based Polymer Solar Cells

  • Mi, Dongbo;Park, Jong Baek;Xu, Fei;Kim, Hee Un;Kim, Ji-Hoon;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1647-1653
    • /
    • 2014
  • 9,10-Bis(bromomethyl)phenanthrene reacted with fullerenes via a Diels-Alder reaction to give phenanthrene-substituted fullerene mono-adducts (PCMA) and bis-adducts (PCBA) as electron acceptors for organic photovoltaic cells (OPVs). The syntheses of the fullerene derivatives were confirmed by $^1H$ $^{13}C$ NMR spectroscopy and MALDI-TOF mass spectrometry. PCMA and PCBA showed better light absorption in the UV-visible region than $PC_{61}BM$. Their electrochemical properties were measured using cyclic voltammetry. Accordingly, the lowest unoccupied molecular orbital (LUMO) energy levels of PCMA and PCBA were -3.66 and -3.57 eV, respectively. Photovoltaic cells were fabricated with a ITO/PEDOT:PSS/poly(3-hexylthiophene)(P3HT):acceptor/LiF/Al configuration, where P3HT and PCBA are the electron donors and acceptors, respectively. The polymer solar cell fabricated using the P3HT:PCBA active layer showed a maximum power conversion efficiency of 0.71%.

Electroluminescent Properties of Spiro[fluorene-benzofluorene]-Containing Blue Light Emitting Materials

  • Jeon, Soon-Ok;Lee, Hyun-Seok;Jeon, Young-Min;Kim, Joon-Woo;Lee, Chil-Won;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.863-868
    • /
    • 2009
  • New spiro[fluorene-7,9′-benzofluorene]-based blue host material, 5-phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-1P), was successfully prepared by reacting 5-bromo-spiro[fluorene-7,9′-benzofluorene] (1) with phenyl boronic acid through the Suzuki reaction. 5-(N,N-Diphenyl)amino-spiro[fluorene-7,9′-benzofluorene] (BH-1DPA) and diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]amine (BD-1) were used as dopant materials. 2,5-Bis-(2',2"- bipyridin-6-yl)-1,1-diphenyl-3,4-diphenylsilacyclopentadiene (ET4) and Alq3 were used as electron transfer materials. Their UV absorption, photoluminescence and thermal properties were examined. The blue OLEDs with the configuration of ITO/DNTPD/$\alpha$-NPD/BH-1P:5% dopant/$Alq_3$ or ET4/LiF-Al prepared from the BH-1P host and BH-1DPA and BD-1 dopants showed a blue EL spectrum at 452 nm at 10 V and a luminance of 923.9 cd/$m^2$ with an efficiency of 1.27 lm/W at a current density of 72.57 mA/$cm^2$.