• 제목/요약/키워드: Li Secondary Battery

검색결과 243건 처리시간 0.028초

리튬 이차 전지를 위한 음극 활물질 표면의 코팅으로 인한 전기화학적 특성 및 안전성 (The Effect of Electrochemical Performance and Safety by Surface Modification of Anode Materials for Lithium Secondary Battery)

  • 허윤정;고성태
    • 전기화학회지
    • /
    • 제12권3호
    • /
    • pp.239-244
    • /
    • 2009
  • 리튬 이차 전지의 전기화학적 특성 및 안전성 향상을 위한 음극 활물질 표면 처리 재료로 $Al_2O_3$$nano-Li_4Ti_5O_{12}$등이 사용된다. 표면 처리된 음극 활물질의 형상과 특성을 관찰하기 위해 주사전자현미경(Scanning electron microscopy, SEM), 투과전자현미경(Transmission electron microscopy, TEM)으로 관찰하였으며, 전기화학적 특성 및 안전성 평가를 위해 충방전기 및 가속 율열량계(Accelerating Rate Calorimeter, ARC)를 사용하였다. 각각의 금속 산화물에 따른 초기 효율 및 초기 용량은 82.5%와 350mAh/g로 동일하지만, 충방전 율속에 따른 특성 및 수명, 그리고 열적 안전성은 $nano-Li_4Ti_5O_{12}$로 음극 활물질을 표면 처리 한 활물질이 더 우수하였다.

리튬금속과 고체전해질의 계면 반응 (Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries)

  • 김재헌
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

Poly(ethylene oxide) 고분자 전해질의 온도, Li 염의 종류 및 가소제 첨가에 따른 전도도 특성 (The Conductivity Properties of Poly(ethylene oxide) Polymer Electrolyte as a Function of Temperature, Kinds of Lithium Salt and Plasticizer Addition)

  • 김종욱;진봉수;문성인;구할본;윤문수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1229-1232
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. This paper describes the effects of lithium salts, plasticizer addition and temperature dependence of conductivity of PEO electrolytes. Polyethylene oxide(PEO) based polymer electrolyte films were prepared by solution casting an acetonitrile solution of preweighed PEO and Li salt. After solvent evaporation, the electrolyte films were vacuum-dried at $60^{\circ}C$ for 48h, the thickness of the films were $90{\sim}110{\mu}m$. The conductivity properties of prepared PEO electrolytes are summarized as follows. PEO electrolyte complexed with $LiClO_4$ shows the better conductivity of the others. $PEO-LiClO_4$ electrolyte when $EO/Li^+$ ratio is 8, showed the best conductivity. Optimum operating temperature of PEO electrolyte is $60^{\circ}C$. By adding propylene carbonate and ethylene carbonate to $PEO-LiClO_4$ electrolyte, its conductivity was higher than $PEO-LiClO_4$ without those. Also $PEO_8LiClO_4$ electrolyte remains static up to 4.5V vs. $Li/Li^+$.

  • PDF

DMSO 첨가에 따른 리튬이차전지용 복합필름의 전기적 특성 (The Electrical Characteristic of Composite Film for Lithium Secondary Battery by adding DMSO)

  • 박수길;김종진;이창진;김상욱;김현후;임기조;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.269-272
    • /
    • 1997
  • The Lithium ion secondary battery has been developed for high energy density of portable electrical device and electronics. Among the many conductive polymer materials, the positive active film for Li polymer battery system was synthesized successfully from polyphenylene diamine(PPD) by chemical polymerization in our lab. And PPD-DMcT(2, 5-dimercapto-1, 3, 4-thi-adiazole) composite flim conductive material, at high temperature was also prerared with the addition of dimethylsulfoxide(DMSO). The surface morphology and thermal stability of prepared composite flim was carried out by using SEM and TGA, respectively. Electrochemical and electrical conductivity of composite flim were also discussed by cyclic voltammetry and four-probe method in dry box(<27pm). And the electrode reaction mechanism was detected and analyzed from the half cell unit battery system.

  • PDF

리튬이온 2차 전지용 전해액의 이온전도도와 전기화학적 특성 (Conductivity and Electrochemical characterization of Lithium ion secondary battery electrolytes)

  • 임동규;이제혁;변문기;조봉희;김영호;우병원;나두찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 1998
  • We have investigated ionic conductivity and electrochemical stability of the electrolytes containing organic solvent. Ion conductivities were measured between 10 and 80$^{\circ}C$, and electrochemical stabilities were determined by cyclic voltammetry on glassy carbon, platinum and aluminum electrodes. Ionic conductivity of electrolyte(EC:DEC=1:1) with IM LiPF$\_$6/ shows better than that of the other electrolytes having Li salts. The IM LiBF$_4$-PC electrolyte exhibits good electrochemical stability. IM LiPF$\_$6/ (EC:DEC=1:1) and IM LiPF$\_$6/ (EC:DMC=1:1) electrolytes are used for the high capacity of battery system.

  • PDF

방전전압에 따른 리튬 이온 2차전지용 음극물질의 전기화학적 특성 (The electrochemical Characteristics on the Anode Material of Lithium Ion Secondary Batteries with Discharge Voltage)

  • 박종광;한태희;정동철;임성훈;한병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권6호
    • /
    • pp.328-334
    • /
    • 2000
  • A lithium ion secondary battery using carbon as a negative electrode has been developed. Further improvements to increase the cell capacity are expected by modifying the structure of the carbonaceous material. There are hopes for the development of large capacity lithium ion secondary batteries with long cycle, high energy density, high power density, and high energy efficiency. In the present paper, needle cokes from petroleum were examined as an anode of lithium ion secondary battery. Petroleum cokes, MCL(Molten Caustic Leaching) treated in Korea Institute Energy Research, were carbonized at various temperatures of 0, 500, 700, $19700^{\circ}C$ at heating rate of $2^{\circ}C$/min for lh. The electrolyte was used lM liPF6 EC/DEC (1:1). The voltage range of charge & discharge was 0.0V(0.05V) ~ 2.0V. The treated petroleum coke at $700^{\circ}C$ had an initial capacity over 560mAh.g which beyond the theoretical maximum capacity, 372mAh/g for LiC6. This phenomena suggests that carbon materials with disordered structure had higher cell capacity than that the graphitic carbon materials.

  • PDF

$LiV_3O_8$/Li 이차전지의 복합양극의 조성에 따른 영향 (Effects of Cathode Composition for $LiV_3O_8$/Li Secondary Battery)

  • 박수길;김종진;이홍기;엄재석;전세호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 1998
  • A new treatment of LiV$_3$O$_{8}$ has beer proposed for improving its electrochemical behavior as a cathode material secondary lithium batteries. Early in its development, the preparation method of LiV$_3$O$_{8}$ strongly influenced its electrochemical properties, such as discharge capacity, rate capability and cycling efficiency. In the present experiment, a new synthesis route has been applied to obtain LiV$_3$O$_{8}$ . Instead of the conventional high temperature technique leading to the crystalline form, a solution technique producing the amorphous form has been used. This material, after dehydration, shows an electrochemical performance exceeding that of the crystalline one. These measurements showed that the ultrasonic treatment process of crystalline LiV$_3$O$_{8}$ causes a decrease in crystallinity and considerable increases in specific surface area and interlayer spacing. So the ultrasonic method provides a convenient means for improving the electrochemical behavior of LiV$_3$O$_{8}$ as a cathode material for secondary lithium batteries.batteries.

  • PDF