• Title/Summary/Keyword: Levy Flight

Search Result 6, Processing Time 0.027 seconds

Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics

  • Aydogdu, Ibrahim;Carbas, Serdar;Akin, Alper
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.93-112
    • /
    • 2017
  • Metaheuristic algorithms in general make use of uniform random numbers in their search for optimum designs. Levy Flight (LF) is a random walk consisting of a series of consecutive random steps. The use of LF instead of uniform random numbers improves the performance of metaheuristic algorithms. In this study, three discrete optimum design algorithms are developed for steel skeletal structures each of which is based on one of the recent metaheuristic algorithms. These are biogeography-based optimization (BBO), brain storm optimization (BSO), and artificial bee colony optimization (ABC) algorithms. The optimum design problem of steel skeletal structures is formulated considering LRFD-AISC code provisions and W-sections for frames members and pipe sections for truss members are selected from available section lists. The minimum weight of steel structures is taken as the objective function. The number of steel skeletal structures is designed by using the algorithms developed and effect of LF is investigated. It is noticed that use of LF results in up to 14% lighter optimum structures.

Sinusoidal Map Jumping Gravity Search Algorithm Based on Asynchronous Learning

  • Zhou, Xinxin;Zhu, Guangwei
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.332-343
    • /
    • 2022
  • To address the problems of the gravitational search algorithm (GSA) in which the population is prone to converge prematurely and fall into the local solution when solving the single-objective optimization problem, a sine map jumping gravity search algorithm based on asynchronous learning is proposed. First, a learning mechanism is introduced into the GSA. The agents keep learning from the excellent agents of the population while they are evolving, thus maintaining the memory and sharing of evolution information, addressing the algorithm's shortcoming in evolution that particle information depends on the current position information only, improving the diversity of the population, and avoiding premature convergence. Second, the sine function is used to map the change of the particle velocity into the position probability to improve the convergence accuracy. Third, the Levy flight strategy is introduced to prevent particles from falling into the local optimization. Finally, the proposed algorithm and other intelligent algorithms are simulated on 18 benchmark functions. The simulation results show that the proposed algorithm achieved improved the better performance.

A Study on Characterizing the Human Mobility Pattern with EM(Expectation Maximization) Clustering (EM(Expectation Maximization) 군집화(Clustering)을 통한 인간의 이동 패턴 연구)

  • Kim, Hyun-Uk;Song, Ha-Yoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.222-225
    • /
    • 2011
  • 이전에 수행된 연구에서 인간의 이동 패턴은 Levy flight 행동을 보인다고 알려져있다. 그러나 우리의 경험적 지식을 바탕으로 생각해 볼 때 인간의 이동 패턴을 Levy flight 행동만 가지고 나타내기에는 한계가 있어 보인다. 인간의 이동 패턴은 주위환경, 시간, 개인의 습관, 그리고 사회적 지위 등에 따라 서로 다른 모양을 보인다. 즉, 인간 이동의 형태를 파악하기 위해서는 좀 더 다양한 정보가 있어야만 인간 이동의 패턴을 사실적으로 모델링 할 수 있다. 인간의 이동 패턴을 사실적으로 모델링하기에 필요한 정보를 얻기 위해서 상향식 방법(Bottom up)으로 우선 실제 이동 패턴을 분석하여 모델링에 필요한 정보를 추출하고 다시 그 정보를 검증하는 과정으로 모델링에 필요한 정보가 구체적으로 나타나게 될 것이다. 이에 실제 인간의 이동 패턴을 분석하기 위해 아무런 매개변수 없이 개인의 GPS 데이터를 바탕으로 위치정보만을 가지고 군집화(Clustering)를 하게 되면 특정 위치에 대한 군집이 생성된다. 이러한 군집이 나타내는 것은 자주 머무는 지역, 이동 경로 등이 될 것이다. 본 논문에서는 인간의 이동 정보인 GPS 데이터를 가지고 EM 군집화를 통하여 생성된 군집을 통해 인간의 이동 패턴을 분석할 것이다.

Ontology Alignment by Using Discrete Cuckoo Search (이산 Cuckoo Search를 이용한 온톨로지 정렬)

  • Han, Jun;Jung, Hyunjun;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.523-530
    • /
    • 2014
  • Ontology alignment is the way to share and reuse of ontology knowledge. Because of the ambiguity of concept, most ontology alignment systems combine a set of various measures and complete enumeration to provide the satisfactory result. However, calculating process becomes more complex and required time increases exponentially since the number of concept increases, more errors can appear at the same time. Lately the focus is on meta-matching using the heuristic algorithm. Existing meta-matching system tune extra parameter and it causes complex calculating, as a consequence, the results in the various data of specific domain are not good performed. In this paper, we propose a high performance algorithm by using DCS that can solve ontology alignment through simple process. It provides an efficient search strategy according to distribution of Levy Flight. In order to evaluate the approach, benchmark data from the OAEI 2012 is employed. Through the comparison of the quality of the alignments which uses DCS with state of the art ontology matching systems.

Discrete Cuckoo Search based Ontology Alignment Algorithm (이산 Cuckoo Search 기반 온톨로지 정렬 알고리즘)

  • Han, Jun;Jung, Hyunjun;Baik, Doo-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.664-667
    • /
    • 2014
  • 기존 온톨로지들을 공유 및 재사용하기 위하여 온톨로지 정렬이 연구되고 있다. 기존 정렬 시스템은 온톨로지 데이터 양에 따라 매트릭스를 생성하고 과도한 계산을 통해 처리하여 대용량 데이터 집합에 대하여 공간적 및 계산적으로 부하를 발생하여 효율적이지 않다. 이를 해결하기 위하여 온톨로지 정렬을 휴리스틱 알고리즘을 적용하여 연구 진행하였다. 기존 휴리스틱 알고리즘은 계산이 간단하지만 조율해야 하는 파라미터가 많기에 특정 도메인에 최적 조합이 필요하며 만족한 성능을 얻지 못하였다. 이 논문에서는 Discrete Cuckoo Search(DCS) 기반 온톨로지 정렬 알고리즘을 제안한다. 제안한 알고리즘은 조율해야 하는 파라미터의 개수가 적고 Levy Flight 분포에 따라 탐색하여 계산이 간단하다. 제안된 알고리즘의 성능을 평가하기 위해 OAEI(Ontology Alignment Evaluation Initiative)에서 제공하는 벤치마크 데이터를 사용하여 정확률(Precision)과 재현율(Recall)을 구하고 기존 휴리스틱 정렬 알고리즘과 비교 평가하였다.

Cuckoo search optimization algorithm for boundary estimation problems in electrical impedance tomography

  • Minho Jeon;Sravan Kumar Konki;Anil Kumar Khambampati;Kyung Youn Kim
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.187-198
    • /
    • 2024
  • Estimating the phase boundary in two-phase flow is crucial for designing and optimizing industrial processes. Electrical impedance tomography (EIT) is a promising technique for imaging phase distribution in such flows. This paper proposes using a cuckoo search (CS) optimization algorithm to estimate the phase boundary with EIT. The boundary is parameterized using the Fourier series, and the coefficients are determined by the CS algorithm. The CS algorithm iteratively seeks the phase boundary configuration by minimizing a cost function. Computer simulations and phantom experiments demonstrate the effectiveness of this method in estimating phase boundaries in two-phase flow.