• Title/Summary/Keyword: Levenberg-Marquardt

Search Result 160, Processing Time 0.035 seconds

Determination of Equivalent Vehicle Load Factors for Flat Slab Parking Structures Using Artificial Neural Networks (인공 신경망을 이용한 플랫 슬래브 주차장 구조물의 등가차량하중계수)

  • 곽효경;송종영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.115-124
    • /
    • 2003
  • In this paper, the effects of vehicle loads on flat slab system are investigated on the basis of the previous studies for beam-gilder parking structural system. The influence surfaces of flat slab for a typical design section are constructed lot the purpose of obtaining maximum member forces under vehicle loads. In addition, the equivalent vehicle load factors for flat slab parking structures are suggested using artificial neural network. The network responses we compared with the results obtained by numerical analyses to verify the validation of Levenberg-Marquardt algorithm adopted as training method in this Paper. Many parameter studies for the flat slab structural system show dominant vehicle load effects at the center positive moments in both column and middle strips, like the beam-girder parking structural system.

Performance enhancement of underwater acoustic source localization by nonlinear optimization of multiple parameters (다수 정보들의 비선형 최적화에 의한 수중 음원 위치 추정 성능 향상)

  • Yang, In-Sik;Kwon, Taek-Ik;Kang, Tae-Woong;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.419-424
    • /
    • 2017
  • TDoA (Time Difference-of Arrival) or DoA (Direction-of-Arrival) can be used for source localization. However, the localizing performance is dependent on relative position between source and receivers, receivers' geometric structure, sound speed, and so on. In this paper we propose a source localization method with enhanced performance that combines multiple information. The proposed method uses the time TDoA, DoA and sound speed as variables. LM (Levenberg-Marquardt) method which is one of nonlinear optimizations is applied. The performances of the proposed method was evaluated by simulation. As result of simulation, the proposed method has the lower average localizing error performance than the previous method.

Depth Scaling Strategy Using a Flexible Damping Factor forFrequency-Domain Elastic Full Waveform Inversion

  • Oh, Ju-Won;Kim, Shin-Woong;Min, Dong-Joo;Moon, Seok-Joon;Hwang, Jong-Ha
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • We introduce a depth scaling strategy to improve the accuracy of frequency-domain elastic full waveform inversion (FWI) using the new pseudo-Hessian matrix for seismic data without low-frequency components. The depth scaling strategy is based on the fact that the damping factor in the Levenberg-Marquardt method controls the energy concentration in the gradient. In other words, a large damping factor makes the Levenberg-Marquardt method similar to the steepest-descent method, by which shallow structures are mainly recovered. With a small damping factor, the Levenberg-Marquardt method becomes similar to the Gauss-Newton methods by which we can resolve deep structures as well as shallow structures. In our depth scaling strategy, a large damping factor is used in the early stage and then decreases automatically with the trend of error as the iteration goes on. With the depth scaling strategy, we can gradually move the parameter-searching region from shallow to deep parts. This flexible damping factor plays a role in retarding the model parameter update for shallow parts and mainly inverting deeper parts in the later stage of inversion. By doing so, we can improve deep parts in inversion results. The depth scaling strategy is applied to synthetic data without lowfrequency components for a modified version of the SEG/EAGE overthrust model. Numerical examples show that the flexible damping factor yields better results than the constant damping factor when reliable low-frequency components are missing.

Estimation of City Bus Delay Element using Levenberg-Marquardt (Levenberg-Marquardt알고리즘을 이용한 시내버스 지연요소 추정)

  • Lee, Jin-Woo;Lee, Hyun-Mi;Lee, Hyeon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.493-498
    • /
    • 2017
  • Recently, traffic data is analyzed for efficiency of bus operation, D2D(: Door to Door) service, and self-driving of public transportation. However, various studies have been carried out to predict the delay time of public transportation, especially buses, but the research to date has been insufficient due to limitations of simple analysis and data acquisition. In this study, delay time estimation is performed by collecting and processing data such as day of the week, weather, and time of day based on bus operation information. The proposed method in this paper can be applied to autonomous public transport and public traffic control system by improving the accuracy by adding variables in the future.

Application of Artificial Neural Network with Levenberg-Marquardt Algorithm in Geotechnical Engineering Problem (Levenberg-Marquardt 인공신경망 알고리즘을 이용한 지반공학문제의 적용성 검토)

  • Kim, Young-Su;Lee, Jae-Ho;Seo, In-Shik;Kim, Hyun-Dong;Shin, Ji-Sub;Na, Yun-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.987-997
    • /
    • 2008
  • Successful design, construction and maintenance of geotechnical structure in soft ground and marine clay demands prediction, control, stability estimation and monitoring of settlement with high accuracy. It is important to predict and to estimate the compression index of soil for predicting of ground settlement. Lab. and field tests have been and are indispensable tools to achieve this goal. In this paper, Artificial Neural Networks (ANNs) model with Levenberg-Marquardt Algorithm and field database were used to predict compression index of soil in Korea. Based on soil property database obtained from more than 1800 consolidation tests from soils samples, the ANNs model were proposed in this study to estimate the compression index, using multiple soil properties. The compression index from the proposed ANN models including multiple soil parameters were then compared with those from the existing empirical equations.

  • PDF

The simultaneous measurement for thermal properties of liquids using transient probe method (과도탐침법을 이용한 액체의 열물성 동시측정)

  • Bae, Sin-Cheol;Kim, Myeong-Yun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.303-315
    • /
    • 1997
  • The theoretical model for the transient probe method is the modified Jaeger model which is used perfect line source theory. The transient probe technique has been developed for the simultaneous determination of thermal conductivity, diffusivity and volumetric heat capacity of liquids. The Levenberg-Marquardt iteration method is adapted to obtain thermal property within nonlinear range. Experimental results of liquids were found to agree well with recommended thermal property data.

Back Analysis for the Properties of Cut and Cover Tunnel using Optimization Algorithms (최적화 알고리즘을 이용한 복개터널 물성값의 역해석)

  • Park, Byung-Soo;Jun, Sang-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2008
  • This study is about the back analysis to optimize the uncertain parameters of geotechnical properties used in stability analysis of cut and cover tunnel. The Simplex algorithm, Powell algorithm, Rosenbrock algorithm, and Levenberg-Marquardt algorithm are applied for artificial problems of ground excavation. Furthermore, results are compared in the matter of the reliability of optimal solutions with a certain accuracy and the computation speed for evaluations of variables. As shown in results of numerical analysis, all of four algorithms are converged to exact solution satisfying the allowable criteria. And Levenberg-Marquardt's and Rosenbrock's algorithms are identified to be the more efficient methods in the evaluations of functions. After the back analysis for Poisson ratio and Young's modulus for cut and cover tunnel has been performed, design parameters have been correctly estimated and computation time has been improved while the number of measure points is increased.

Regularized Neural Network Training Algorithm Using Line Search Tunneling and It's Application to Option Pricing (선형탐색 터널링을 이용한 정규화 신경망 학습 알고리즘과 옵션가격결정에의 응용)

  • Kim, Bo-Hyeon;Jeong, Gyu-Hwan;Choe, Hyeong-Jun;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.746-752
    • /
    • 2005
  • 본 논문에서는 다층 퍼셉트론 신경망 학습을 위한 새로운 두 단계 학습방법을 제안하고 이를 옵션 가격결정 모형에 응용하였다. 제안된 신경망 학습 알고리즘의 첫번째 단계는 Levenberg-Marquardt 알고리즘을 이용하여 빠르게 국소최적해를 찾는 것이고 두 번째 단계는 첫 번째 단계에서 찾은 국소최적해가 원하는 수준에 미치지 못할 경우 선형탐색 터널링을 이용해서 더 나은 해를 찾는 것이다. 이 두 단계를 반복적으로 수행함으로써 연결가중치 공간에서 구하고자 하는 해를 빠르고 안정적으로 찾을 수 있다. 현재 옵션가격결정 모형으로 많이 이용되고 있는 Black-Scholes 모형의 문제점을 극복하기 위해서 제안된 신경망 모형을 옵션가격결정 문제에 사용하였다. 이 모형을 KOSPI200 옵션 데이터로 실험한 결과 Black-Scholes 모형에 비해 검증오차를 60% 가량 줄일 수 있었다.

  • PDF

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo;Lee, Sin Yong;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.