• 제목/요약/키워드: Level Set Segmentation

검색결과 87건 처리시간 0.026초

Extension of Fast Level Set Method with Relationship Matrix, Modified Chan-Vese Criterion and Noise Reduction Filter

  • Vu, Dang-Tran;Kim, Jin-Young;Choi, Seung-Ho;Na, Seung-You
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권3E호
    • /
    • pp.118-135
    • /
    • 2009
  • The level set based approach is one of active methods for contour extraction in image segmentation. Since Osher and Sethian introduced the level set framework in 1988, the method has made the great impact on image segmentation. However, there are some problems to be solved; such as multi-objects segmentation, noise filtering and much calculation amount. In this paper we address the drawbacks of the previous level set methods and propose an extension of the traditional fast level set to cope with the limitations. We introduce a relationship matrix, a new split-and-merge criterion, a modified Chan-Vese criterion and a novel filtering criterion into the traditional fast level set approach. With the segmentation experiments we evaluate the proposed method and show the promising results of the proposed method.

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

Compar ison of Level Set-based Active Contour Models on Subcor tical Image Segmentation

  • Vongphachanh, Bouasone;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.827-833
    • /
    • 2015
  • In this paper, we have compared three level set-based active contour (LSAC) methods on inhomogeneous MR image segmentation which is known as an important role of brain diseases to diagnosis and treatment in early. MR image is often occurred a problem with similar intensities and weak boundaries which have been causing many segmentation methods. However, LSAC method could be able to segment the targets such as the level set based on the local image fitting energy, the local binary fitting energy, and local Gaussian distribution fitting energy. Our implemented and tested the subcortical image segmentations were the corpus callosum and hippocampus and finally demonstrated their effectiveness. Consequently, the level set based on local Gaussian distribution fitting energy has obtained the best model to accurate and robust for the subcortical image segmentation.

Segmentation of Neuronal Axons in Brainbow Images

  • Kim, Tae-Yun;Kang, Mi-Sun;Kim, Myoung-Hee;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1417-1429
    • /
    • 2012
  • In neuroscientific research, image segmentation is one of the most important processes. The morphology of axons plays an important role for researchers seeking to understand axonal functions and connectivity. In this study, we evaluated the level set segmentation method for neuronal axons in a Brainbow confocal microscopy image. We first obtained a reconstructed image on an x-z plane. Then, for preprocessing, we also applied two methods: anisotropic diffusion filtering and bilateral filtering. Finally, we performed image segmentation using the level set method with three different approaches. The accuracy of segmentation for each case was evaluated in diverse ways. In our experiment, the combination of bilateral filtering with the level set method provided the best result. Consequently, we confirmed reasonable results with our approach; we believe that our method has great potential if successfully combined with other research findings.

Contrast-enhanced Bias-corrected Distance-regularized Level Set Method Applied to Hippocampus Segmentation

  • Selma, Tisa;Madusanka, Nuwan;Kim, Tae-Hyung;Kim, Young-Hoon;Mun, Chi-Woong;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1236-1247
    • /
    • 2016
  • Recently, the level set has become a popular method in many research fields. The main reason is that it can be modified into many variants. One such case is our proposed method. We describe a contrast-enhancement method to segment the hippocampal region from the background. However, the hippocampus region has quite similar intensities to the neighboring pixel intensities. In addition, to handle the inhomogeneous intensities of the hippocampus, we used a bias correction before hippocampal segmentation. Thus, we developed a contrast-enhanced bias-corrected distance-regularized level set (CBDLS) to segment the hippocampus in magnetic resonance imaging (MRI). It shows better performance than the distance-regularized level set evolution (DLS) and bias-corrected distance-regularized level set (BDLS) methods in 33 MRI images of one normal patient. Segmentation after contrast enhancement and bias correction can be done more accurately than segmentation while not using a bias-correction method and without contrast enhancement.

A MULTIPHASE LEVEL SET FRAMEWORK FOR IMAGE SEGMENTATION USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • TERBISH, DULTUYA;ADIYA, ENKHBOLOR;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권2호
    • /
    • pp.63-73
    • /
    • 2017
  • Segmenting the image into multiple regions is at the core of image processing. Many segmentation formulations of an images with multiple regions have been suggested over the years. We consider segmentation algorithm based on the multi-phase level set method in this work. Proposed method gives the best result upon other methods found in the references. Moreover it can segment images with intensity inhomogeneity and have multiple junction. We extend our method (GLIF) in [T. Dultuya, and M. Kang, Segmentation with shape prior using global and local image fitting energy, J.KSIAM Vol.18, No.3, 225-244, 2014.] using a multiphase level set formulation to segment images with multiple regions and junction. We test our method on different images and compare the method to other existing methods.

결막 충혈도 측정을 위한 공막 영상 분할 (Sclera Segmentation for the Measurement of Conjunctival Injection)

  • 배장표;김광기;정창부;양희경;황정민
    • 한국멀티미디어학회논문지
    • /
    • 제13권8호
    • /
    • pp.1142-1153
    • /
    • 2010
  • 결막 충혈은 결막염, 각막염, 포도막염 등의 안과질환의 초기 증세로서 정량적으로 평가할 수 있다면 진단과 경과 관찰에 도움이 된다. 충혈의 정량화에서 공막의 크기는 중요한 지표이지만 기존의 공막 분할 방법이 정확하지 않기 때문에 수동으로 분할하고 있다. 본 논문에서는 충혈의 정량화를 위하여 level set 방법을 이용한 공막 분할 알고리즘을 제안한다. Level set의 초기 모델은 Lab 색상 모드와 k-means 알고리즘, 기하학적인 정보를 이용하여 지정된다. 헤이시안(hessian) 분석으로 공막과 피부 사이의 골을 향상시킨 영상에 level set을 적용하였다. 제안 방법의 성능 측정을 위하여 52개의 전안부 영상에 대하여 실험하였다. 실험 결과, 제안 방법이 화소값만 이용하는 region growing이나 level set의 초기 모델로 임의의 원을 이용하는 방법보다 성능이 우수하였다. 이 논문에서 제안한 공막 분할 방법은 객관적인 충혈도 측정에서 중요한 요소 기술의 역할을 할 것이다.

A New Variational Level Set Evolving Algorithm for Image Segmentation

  • Fei, Yang;Park, Jong-Won
    • Journal of Information Processing Systems
    • /
    • 제5권1호
    • /
    • pp.1-4
    • /
    • 2009
  • Level set methods are the numerical techniques for tracking interfaces and shapes. They have been successfully used in image segmentation. A new variational level set evolving algorithm without re-initialization is presented in this paper. It consists of an internal energy term that penalizes deviations of the level set function from a signed distance function, and an external energy term that drives the motion of the zero level set toward the desired image feature. This algorithm can be easily implemented using a simple finite difference scheme. Meanwhile, not only can the initial contour can be shown anywhere in the image, but the interior contours can also be automatically detected.

SIMULTANEOUS FOREGROUND AND BACKGROUND SEGMENTATION WITH LEVEL SET FUNCTION

  • Lee, Suk-Ho
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권4호
    • /
    • pp.315-321
    • /
    • 2009
  • In this paper, a level set based energy functional is proposed, the minimization of which results in simultaneous reference background image modeling and foreground segmentation. Due to the mutual constraint of the two processes, a good estimate of the background can be obtained with a small number of frames, and due to the use of the level set, an Euler-Lagrange equation that directly solves the problem can be derived.

  • PDF