• Title/Summary/Keyword: Level II 신뢰성 해석

Search Result 15, Processing Time 0.023 seconds

Reliability Analysis and Evaluation of Partial Safety Factors for Wave Run-up (처오름에 대한 신뢰성 해석 및 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.355-362
    • /
    • 2008
  • A reliability model of Level II AFDA is proposed to analyze the wave run-up occurring by the interaction of incident waves and sloped coastal structures. The reliability model may be satisfactorily calibrated by Level III Monte-Carlo simulation. Additionally, the partial safety factors of random variables related to wave run-up can be straightforwardly evaluated by the inverse-reliability method that use influence coefficients and uncertainties of random variables, and target probability of failure. In particular, a design equation for wave run-up is derived in the same form as that of deterministic design method so that the reliability-based design method of Level I may be applied easily. Finally, it is confirmed that results redesigned by the reliability-based design method of Level I with partial safety factors suggested in this paper are satisfactorily compared with results of CEM(2006) as well as those of Level II AFDA.

Reliability Analysis of Chloride Ion Penetration based on Level II Method for Marine Concrete Structure (해양 콘크리트 구조물에 대한 Level II 수준에서의 염소이온침투 신뢰성 해석)

  • Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.129-139
    • /
    • 2008
  • Due to uncertainty of numerous variables in durability model, a probalistic approach is increasing. Monte Carlo simulation (Level III method) is an easily accessible method, but requires a lot of repeated operations. This paper evaluated the effectiveness of First Order Second Moment method (Level II method), which is more convenient and time saving method than MCS, to predict the corrosion initiation in harbor concrete structure. Mean Value First Order Second Moment method (MV FOSM) and Advanced First Order Second Moment method (AFOSM) are applied to the error function solution of Fick's second law modeling chloride diffusion. Reliability index and failure probability based on MV FOSM and AFOSM are compared with the results by MCS. The comparison showed that AFOSM and MCS predict the similar reliability index and MV FOSM underestimates the probability of corrosion initiation by chloride attack. Also, the sensitivity of variables in durability model to corrosion initiation probability was evaluated on the basis of AFOSM. The results showed that AFOSM is a simple and efficient method to estimate the probability of corrosion initiation in harbor structures.

A Level II reliability approach to rock slope stability (암반사면 안정성에 대한 Level II 신뢰성 해석 연구)

  • Park, Hyuck-Jin;Kim, Jong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.319-326
    • /
    • 2004
  • Uncertainty is inevitably involved in rock slope engineering since the rock masses are formed by natural process and subsequently the geotechnical characteristics of rock masses cannot be exactly obtained. Therefore the reliability analysis method has been suggested to deal properly with uncertainty. The reliability analysis method can be divided into level I, II and III on the basis of the approach for consideration of random variable and probability density function of reliability function. The level II approach, which is focused in this study, assumes the probability density function of random variables as normal distribution and evaluates the probability of failure with statistical moments such as mean and standard deviation. This method has the advantage that can be used the problem which the Monte Carlo simulation approach cannot be applied since the complete information on the random variables are not available. In this study, the analysis results of level II reliability approach compared with the analysis results of level III approach to verify the appropriateness of the level II approach. In addition, the results are compared with the results of the deterministic analysis.

  • PDF

Evaluation of Partial Safety Factors on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Kwon, Hyuk-Jae;Lee, Sun-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.267-277
    • /
    • 2009
  • Partial safety factors of the load, resistance, and reliability function are evaluated according to the target probability of failure on sliding mode of monolithical vertical caisson of composite breakwaters. After reliability function is formulated for sliding failure mode of caisson of composite breakwaters regarding bias of wave force, uncertainties of random variables related to loads, strengths are analyzed. Reliability analysis for the various conditions of water depth, geometric, and wave conditions is performed using Level II AFDA model for the sliding failure. Furthermore, the reliability model is also applied to the real caisson of composite breakwaters of Daesan, Dong- hae, and Pohang harbor. By comparing the required width of caisson of composite breakwater according to target probability of failure with the other results, the partial safety factors evaluated in this study are calibrated straightforwardly. Even though showing a little difference on the 1% of target probability, it may be found that the present results agree well with the other results in every other target probability of failure.

Reliability Analysis of Caisson Type Quaywall (안벽구조물의 신뢰성 해석)

  • Yoon, Gil-Lim;Kim, Dong-Hywan;Kim, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.498-509
    • /
    • 2008
  • Reliability analyses of Level I, II and III for bearing capacity, overturning and sliding of quaywall are carried out to investigate their safety levels depending upon its failure modes, and sensitivity analyses of each design variable are performed to find their effects on safety levels of quaywall. Reliability indices was 1.416 for both level II and III for case study I, and with 2.201 and 1.880, respectively, for the case study II at the critical loading conditions. Thus we were able to know that Level II (FORM) approach is good enough to use in practical design. Generally, it was found that probabilities of failure of quaywall were higher for sliding and bearing capacity failure modes and lower for overturning failure mode. From sensitivity analyses, the most influential design variables to reliability index of quaywall were coefficient of friction, residual water pressure and resistance moment for the sliding, overturning and bearing capacity failure modes, respectively. Especially, the sensitivity of reliability index due to inertial force and dynamic water pressures, which include a large COV when earthquake occurs, did not change greatly.

Evaluation of Partial Safety Factors of Armor Units by Inverse-Reliability Analysis (역해석법에 의한 피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.149-156
    • /
    • 2008
  • A reliability model of Level II AFDA is developed to analyze the stability of armor units on the sloped coastal structures. Additionally, the partial safety factors of random variables related to armor units can be straightforwardly evaluated by applying the inverse-reliability method in which influence coefficients and uncertainties of random variables, and target probability of failure are combined directly. In particular, a design equation for armor units is derived in terms of the same criteria as deterministic design method in order to apply the reliability-based design method of Level I without some understanding to the reliability analysis. Finally, it is confirmed that several results redesigned by the reliability-based design method of Level I have satisfactorily agreement with results of CEM as well as those of Level II AFDA.

  • PDF

Reliability Analysis of Pile Type Quaywall Using Response Surface Method (응답면 기법을 이용한 잔교식 안벽의 신뢰성 해석)

  • Lee, Sang-Geun;Kim, Dong-Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.407-413
    • /
    • 2011
  • Reliability analysis of pile type quaywalls were done by using response surface method. Pier structures have implicit form of limit state function since they are flexible in motion, which is different from gravity type quaywalls. To solve a reliability analysis problem with implicit limit state function, response surface method was applied. Reliability indices of structure under seismic load were found for pier structures Then, they were compared with those found by simulation method. In numerical analysis, both the inclined type and vertical type were analyzed.

Analysis of Probabilities of Failure and Partial Safety Factors of Armor Units on Tranding and Coastal Harbors (무역항 및 연안항 피복재의 파괴확률과 부분안전계수 해석)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.157-165
    • /
    • 2008
  • Level II AFDA and Level III MCS reliability models are applied to analyze the stability of armor units on trading and coastal harbors in Korea. Hudson's formula and Van der Meer's formula are used in this reliability analysis. Also, probability density functions of reliability index and probability of failure are derived by the additional analysis. In addition, the partial safety factors of all harbors related to armor units can be straightforwardly evaluated by the inverse-reliability method. The upper and lower limits and average level of partial safety factors can be statistically investigated with the results of all cases applied in this paper. Therefore, it may be possible to design armor units of new breakwaters including the uncertainty of random variable and target level by using the present results.

  • PDF

Seismic Safety Assessment of Containment Building (격납건물의 내진안전성 평가)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • In this study, the seismic safety of containment building is assessed using response surface method. The structural analyses considering random variables such as load, resistance and analysis by ABAQUS are performed to obtain the structural response. The structural response is represented by polynomial of random variables, and the reliability analysis is performed by Level II method. Drucker-Prager failure criterion is applied as limit state function to take bi-axial stress states into account in the concrete. The lifetime probability of failure is evaluated by considering the lifetime of containment building, the annual occurrence rate of earthquake and the conditional probability of failure. Also the sensitivity analysis on the selection of sampling points is performed to obtain the steady results from response surface method.

Development of Reliability-Based Design Program based on the MATLAB GUI Environment (MATLAB GUI 환경기반 신뢰성 설계기법의 개발)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Tae-Hun;Kim, Jeong-Dae;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.415-422
    • /
    • 2010
  • Development of the reliability-based design program in the GUI environment is inadequate for engineers familiar with the deterministic design to deal with the international design criterion based on the probabilistic design. In this study, the design program based on the GUI environment is developed in order to more efficiently input the design factor and more easily carry out the design works. The GUI environment is the GUIDE (Graphic User Interface Development Environment) tool supported by the latest MATALB version 7.1. In order to test the model reliability, the probabilities of failure (POF) on the breakwater armor block (AB) and gravity quay-wall (QW) in the sliding mode are computed using the model in the Level II and Level III. The POF are 55.4~55.7% for breakwater AB and 0.0006~0.0007% for gravity QW. A non-GUI environment program results of the POF are 55.6% for breakwater AB and 0.0018% for gravity QW. In comparison, the POF difference is negligible for breakwater AB because the exact input design parameters are available, whereas the large POF difference, but within the same order, for gravity QW can be explained by the difference of the input design factors because of the poor input data information.