• Title/Summary/Keyword: Level(amount) of Radiation Exposure

Search Result 35, Processing Time 0.028 seconds

TLD's Glow Curve and Radiation Exposure Amount Analysis at Environment with/without Magnetic Field Exposure as Time Passing (시간 경과에 따른 자기장 노출 유·무 환경에서 열형광선량계의 글로우 곡선 및 피폭 방사선량 분석)

  • Lee, Jae-Heon;Ko, Seong-Jin;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.419-426
    • /
    • 2016
  • The research is done to analyze the change of personal dosimeter according to the elapsed times(24 hours, 1 week, 2 weeks, 3 weeks, 4 weeks) and magnetic field and find out the effective exposure treatment for radiation workers. At first, research the heat treatment and radiation of grouped TLD and keep them in different environments-exposed separately to observe the consequences of glow curve and the level of radiation exposure. As a result, we could find that 24 hours passing TLD group showed the difference in glow curve and the level of radiation. This can be considered as the change caused by magnetic exposure. Also the average radiation exposure level of TLD group, unexposed to the magnetic field, was 15.41 mSv. And the average radiation exposure level of TLD group, exposed to the magnetic field, was 14.83 mSv which decreased the biggest amount(3.80%) among the other groups. If a radiation worker, who works in PET-MRI room, uses TLD as a personal dosimeter, the level of real radiation exposure caused by exposure to the magnetic field won't change significantly as recorded at a regular record cycle but with not regular record but interim record, the lower exposure dose will be appeared than the real level of radiation.

System Software Design of Computerized Tomography Radiation Dose Management (컴퓨터 단층촬영 방사선 노출 관리 시스템 소프트웨어 설계)

  • Yang, Yu Mi;Cho, Sang Wook;Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • This paper provides the design of system software for the management of radiation dose that is generated by using computerized tomography(CT). Recently, the radiation leakage incident of Japanese nuclear power plant was in the news internationally and there is a growing interest not only in nuclear power plant but in medical radiation exposure. In spite of the fact that currently safety management of radiation is under control only the workers of the radiation involved, now the exposure management of patients have been required. As surgery and inspections using the radiation have increased, this medical radiation exposure is increasing too. But it is a real situation that medical institutions don't know the level of radiation exposure applied to the patient. Therefore, a system for managing the radiation exposure of a patient from the medical institution is required. This paper proposes a design of a software program that manages the radiation exposure of CT which is a typical imaging tool to use the radiation in the medical institution. By check the amount of radiation dose and set the limit of dose, we would be of help to optimize the medical exposure of the patient.

System Software Design of Computed Tomography Radiation Dose Management (컴퓨터 단층촬영(CT) 방사선 노출 관리 시스템 소프트웨어 설계)

  • Yang, Yu-mi;Lee, Kil-hung;Cho, Sang-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.489-492
    • /
    • 2014
  • This thesis provides the design of system software for the management of radiation dose that is generated using computer tomography(CT). Because radiation exposure is different depending on the difference in sensitivity to each part for each of the patient's body, if we will be able to manage an appropriate amount of radiation, it is possible to estimate the radiation exposure of the patient as a result. Recently, radiation leakage incident of Japanese nuclear power plant was in the news internationally and there is a growing interest not only a nuclear power plant, to medical radiation exposure. In spite of the fact that currently safety management of radiation is under control only the workers of the radiation involved, exposure management of patients until now have been required. Surgery and inspection using the radiation in Korea will increase, due to this medical exposure has increased, but it is a reality that medical institution don't know the level of radiation exposure applied to the patient. Therefore a system for managing the radiation exposure of the patient from the medical institution is required. This paper proposes a design of a software program to manage the radiation exposure of CT is an typical imaging tool to use the radiation in the medical institution. By check the amount of radiation dose and set the limit of dose, we would help to optimize the medical exposure of the patient.

  • PDF

Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy (양성자 치료 시 방사선 작업 종사자에게 미치는 방사선 피폭에 대한 평가)

  • Lee, Seung-Hyun;Jang, Yo-Jong;Kim, Tae-Yoon;Jeong, Do-Hyung;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2012
  • Purpose: Unlike the existing linear accelerator with photon, proton therapy produces a number of second radiation due to the kinds of nuclide including neutron that is produced from the interaction with matter, and more attention must be paid on the exposure level of radiation workers for this reason. Therefore, thermoluminescence dosimeter (TLD) that is being widely used to measure radiation was utilized to analyze the exposure level of the radiation workers and propose a basic data about the radiation exposure level during the proton therapy. Materials and Methods: The subjects were radiation workers who worked at the proton therapy center of National Cancer Center and TLD Badge was used to compare the measured data of exposure level. In order to check the dispersion of exposure dose on body parts from the second radiation coming out surrounding the beam line of proton, TLD (width and length: 3 mm each) was attached to on the body spots (lateral canthi, neck, nipples, umbilicus, back, wrists) and retained them for 8 working hours, and the average data was obtained after measuring them for 80 hours. Moreover, in order to look into the dispersion of spatial exposure in the treatment room, TLD was attached on the snout, PPS (Patient Positioning System), Pendant, block closet, DIPS (Digital Image Positioning System), Console, doors and measured its exposure dose level during the working hours per day. Results: As a result of measuring exposure level of TLD Badge of radiation workers, quarterly average was 0.174 mSv, yearly average was 0.543 mSv, and after measuring the exposure level of body spots, it showed that the highest exposed body spot was neck and the lowest exposed body spot was back (the middle point of a line connecting both scapula superior angles). Investigation into the spatial exposure according to the workers' movement revealed that the exposure level was highest near the snout and as the distance becomes distant, it went lower. Conclusion: Even a small amount of exposure will eventually increase cumulative dose and exposure dose on a specific body part can bring health risks if one works in a same location for a long period. Therefore, radiation workers must thoroughly manage exposure dose and try their best to minimize it according to ALARA (As Low As Reasonably Achievable) as the International Commission on Radiological Protection (ICRP) recommends.

  • PDF

Decreased of Patient Dose by Built-in Filter in Pelvis A-P Projection (골반촬영 시 내장된 필터를 이용한 환자선량 감소)

  • Shin, Seong-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.233-239
    • /
    • 2012
  • This study was performed to find a method to decrease the radiation exposure of patients when obtaining anteroposterior pelvic images maintaining the quality of the image by using the copper filter built in the DR equipment now being used in our hospital. We measured the level of radiation by changing the filters from none filter to 0.1mmCu, 0.2mmCu, and 0.3mmCu and detected the organ level of radiation by PCXMC program. As a result, high levels of radiation were detected in the bladders and testicles and the levels were decreased as the thickness of the filter was increased and the amount of decrease was the highest in 0.1mmCu. And we asked for the expert opinions to 3 radiologists and as a result, only images obtained by 0.1mmCu filter out of all the images on which copper filters were used were accepted as the ones with diagnostic value same as none filter. At this time, the incident dose on the pelvic region was 0.895mGy which was smaller than the one in none filter by 47%. Therefore, using 0.1mmCu when obtaining anteroposterior pelvic images can effectively decrease the radiation exposure of patients.

Determination of Scattered Radiation to the Thyroid Gland in Dental Cone Beam Computed Tomography

  • Wilson Hrangkhawl;Winniecia Dkhar;T.S. Madhavan;S. Sharath;R. Vineetha;Yogesh Chhaparwal
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.15-19
    • /
    • 2023
  • Background: Cone beam computed tomography (CBCT) is a specialized medical equipment and plays a significant role in the diagnosis of oral and maxillofacial diseases and abnormalities; however, it is attributed to risk of exposure of ionizing radiation. The aim of the study was to estimate and determine the amount of scattered radiation dose to the thyroid gland in dental CBCT during maxilla and mandible scan. Materials and Methods: The average scattered radiation dose for i-CAT 17-19 Platinum CBCT (Imaging Sciences International) was measured using a Multi-O-Meter (Unfors Instruments), placed at the patient's neck on the skin surface of the thyroid cartilage, with an exposure parameter of 120 kVp and 37.07 mAs. The surface entrance dose was noted using the Multi-O-Meter, which was placed at the time of the scan at the level of the thyroid gland on the anterior surface of the neck. Results and Discussion: The surface entrance dose to the thyroid from both jaws scans was 191.491±78.486 µGy for 0.25 mm voxel and 26.9 seconds, and 153.670±74.041 µGy from the mandible scan, whereas from the maxilla scan the surface entrance dose was 5.259±10.691 µGy. Conclusion: The surface entrance doses to the thyroid gland from imaging of both the jaws, and also from imaging of the maxilla and mandible alone were within the threshold limit. The surface entrance dose and effective dose in CBCT were dependent on the exposure parameters (kVp and mAs), scan length, and field of view. To further reduce the radiation dose, care should be taken in selecting an appropriate protocol as well as the provision of providing shielding to the thyroid gland.

An inquiry into dental personnel's Knowledge, attitude and behavior about the defense against dental radiation (치과 의료기관 종사자의 방사선 방어에 대한 지식, 태도 및 행위)

  • Kim, Sun-Ju
    • Journal of Korean society of Dental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2004
  • The purpose of this study was to understand the relationship among knowledge, attitude, and behavior of dental personnel about the defense against dental radiation according to general features, and help them recognize the importance of defense against dental radiation. A questionnaire survey of 187 dental personnel who were working in 121 medical institutions such as university hospitals, general hospitals, hospitals, clinics, and public health centers in Seoul area was conducted from December 2002 to January 2003. Study findings are as follows: 1. The average knowledge score for the defense of radiation was 9.51(full score=14): By the demographic features, the know level for the defense of radiation was appeared to be different with the occupational category, age, academic background, workplace, year of working, and whether having the education of radiation or not. By questionnaire items, the knowledge for the defense of radiation was high in general, but for the item. 'the average amount of being bombed with radiation according occupations cannot be over 20mSv in a year for prescribed 5 years'. it was 18.7%: and for the item. 'the longer the length between focus and film. the less the amount of skin exposure', it was 40.6%. showing less knowledge for these two items. 2. The average attitude score for the defense of radiation was 64.24 (full score=75): By the demographic features, the attitude score was higher with respondents who were 31-35 years old. 11-15 years of working. and having radiation education. The attitude score by questionnaire items was generally high for all the items. 3. The average behavior score for the defense of radiation was 45.43: (a) By the demographic features, the behavior score for the defense of radiation was appeared to be higher with respondents who were dentists for occupational category, the aged for age, holding higher diploma for academic background, working in the university hospitals for workplace, and having longer occupational career for the year of working. (b) The behavior score for the defense of radiation by questionnaire items was lower than that of the attitude score for all the items. For the item, 'the amount of X-ray radiation is adjusted according to such conditions as patients' age, radiating areas, and kind of films', the score was 4.03; and for the item, 'Must receive the education of safety management of radiation periodically', the score was 1.73 and it was the lowest one. 4. As for the correlation among the knowledge, attitude, and behavior for the defense of radiation, the higher the level of knowledge and attitude, the higher the level of behavior.

  • PDF

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography(VCUG) (영.유아의 배뇨성 방광-요도 조영술 및 방사선 공기 주입 정복술시 피폭선량 경감을 위한 fluorograb의 유용성)

  • Kim, Sang-Tae;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.385-390
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

The Efficacy of Fluorograb for Paediatric Patients Dose Reduction during Pneumatic Reduction and Voiding Cystourethrography (VCUG) (영아/유아의 공기 주입 정복술 및 방사선 배뇨성 방광요도 조영술시 피폭 선량 경감을 위한 FluroGrab의 유용성)

  • Kim, Sang-Tae;Choi, Ji Won;Han, Tae-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1167-1172
    • /
    • 2009
  • The Pneumatic Reduction and VCUG (Voiding Cystourethrography) are commonly used in the paediatric age group. The procedures had a particularly long fluroscopic screening time, despite a successful outcome for paediatric patients. Pneumatic Reduction and VCUG almost invariably requires fluoroscopic guidance which does confer a radiation dose. This article contains suggestions on how the radiation dose to paediatric patients from Pneumatic Reduction and VCUG can be made "as low as reasonably achievable" (ALARA). The aim of our study was eliminated in spot image applying the FluoroGrab, which has function of capturing an image of interest area from the picturing while fluoroscopic procedures. FluoroGrab has clinical value equivalent to the spot image, and is applied to the most recent fluoroscopic procedures. The radiologist and the radiographers should consider new option for decreasing the radiation exposure delivered to paediatric patients by making equipment modifications to the fluoroscopy to optimize radiation exposure reduction techniques. Thus, we propose the FluoroGrab instead of spot exposure for the reduction of patient exposure dose in paediatric, and try to confirm the effect of the mitigating amount of radiation exposure to paediatric patients when pneumatic reduction and VCUG. Fluorograb is the safe and useful method that shows the equivalent level of accuracy to spot exposure, and to minimize the radiation load to paediatric patients are to be the substitute for the spot exposure for Pneumatic Reduction and VCUG.

  • PDF

Evaluation of Automatic Exposure Control Systems (X선자동노출(X線自動露出) 제어장치(制御裝置)에 관한 검토(檢討))

  • Kim, Chung-Min;Kim, Keon-Chung;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 1991
  • Automatic exposure control systems are now readily available and widly used in radiography. A device that automatically determines the amount of radiation required to produce an acceptable level of film blackness is called a phototimer, or automatic exposure control. There are limitations in the use of phototimers ; however, equipment can be used much more effectively if one recognize these limitations, and the goal of obtaining a properly exposed, reproducible radiography can be achieved. We have some results in this experimental study. The variations of film density due to kVp are in propotion to below 80 kVp range. But indicate constant level above 80 kVp to 120 kVp. The characteristic density variation by phantom thickness shows the higher the thiner in exit type. AEC system have a density control that is designed to make adjustments increase or decreas the density 10% per step or 25% per step. The automatic exposure control circuits must meet the several regulations of the HEW. Some forms of technique chart is recomened for use of AEC.

  • PDF