• Title/Summary/Keyword: Levee Experiment

Search Result 38, Processing Time 0.033 seconds

Suitability Analysis of Numerical Models Related to Seepage through a Levee (제방 침투 수치해석 모형의 적합성 분석)

  • Im, Dong-Kyun;Yeo, Hong-Koo;Kim, Kyu-Ho;Kang, Jun-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.241-252
    • /
    • 2006
  • Numerical models for seepage analysis are useful tools to analyze problems and design protection techniques that are related to seepage through a levee. Though every model may have its own limitations and shortcomings, there were no generalized verifications or calibrations for the commercial models. It means that users can run the model and get the result without understanding nor taking any enough training. This paper Investigates applicability and suitability of some seepage numerical models by comparing analytical solutions with experiments in the user's viewpoint. The results showed that it is more desirable to use analyses with unsaturated-unsteady condition rather than those with saturated-steady conditions, since seepage phenomenon of real levees are changed according to water level and soil property. This study also compared the calculated unsteady solutions with the calculated steady solutions for the levee at Koa of the Nakdong River The comparison revealed that as the result, the safety factor of $2.0{\sim}3.5$ has the same effects for seepage protection techniques when they are designed on the basis of steady-state analysis.

Detecting Backward Erosion Piping Using a Tracer (추적자를 이용한 후퇴 침식 파이핑 현상 탐지법 개발 연구)

  • Jeong, Won;Kim, Byunguk;Seo, Il Won;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.55-62
    • /
    • 2023
  • Internal erosion is one of the main causes of levee damage and collapse, and representative of this is backward erosion piping. This type of internal erosion accounts for one-third of the damage to levees, meaning it is important to predict and prevent it. In this work, experiments were conducted with the aim of detecting piping in advance by using a tracer. Experiments were undertaken by changing the head difference, soil diameter, and the installation of the cutoff wall. A tracer was injected twice, once at the beginning of the experiment and once after the piping occurred. A key finding was that the piping process significantly affectedthe concentration variation of the tracer in a soil layer. Hence, a tracer concentration curve monitored at downstream could provide information about piping occurrence. It is expected that the results of this study can be used to prevent levee damage and collapse caused by piping.

A Study on Seepage line of Dam body by Finite Element method and Experiment. (이론 및 실험에 의한 제체의 침윤선에 관한 연구)

  • 신문섭;안상진
    • Water for future
    • /
    • v.14 no.2
    • /
    • pp.53-62
    • /
    • 1981
  • In the Hydraulic Structure, Such as dam body or levee of river that is constructed with soil, We analyzed a top line of free ground water table. This study is based on the logical reason that the pressure on the free surface is atmospheric and the seepage line is a stream line. In order to research for the unknown seepage line. We analyzed seepage water of steady flow through parous media by Finite Element method based on Galerkin Principle, and compared the comluted value with experimental value. The results show that the computed value was nearly equal to the experimental value. Finally, it noticed that finite Element method was more practical than Experimental Method for Seepage line analysis.

  • PDF

An analysis on stability of riprap considering hydraulic characteristics of flow around joint revetment (연결호안 주변 흐름의 수리적 특성을 고려한 사석호안의 안정성 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.1035-1044
    • /
    • 2016
  • In joint portions of the levee and the barrier, complex 3-dimensional flow was generated and collapse of revetment occurred frequently. For these reasons, it is necessary to install the joint revetment with greater stability as compared with the general revetment at the joint portions. However, design criteria for joint revetment was not presented in River Design Criteria (KWRA, 2009). Therefore it is necessary to research for engineering design of the joint revetment. In this study, hydraulic experiments were performed under various flow conditions in order to realize the collapse conditions of riprap and carried out in 20.0 m straight open channel with one side levee and the width was 4.0 m. The diameter of riprap covered around joint revetment was 0.03 m and the inlet discharges were $0.5{\sim}0.8m^3/s$. The numerical simulations were performed under same conditions with experiment. as results of this numerical simulations, the influence range was confirmed from the distribution of flow characteristics and shear stress. As a result, the riprap diameter of the joint revetment was calculated from 4.1 to 6.9 times greater than that of general revetment. As the inlet discharge was large, the range of vulnerable area was developed long in the downstream direction despite of same withdrawal velocity of riprap. Through this study, the methods of calculating the riprap diameter and influence range were proposed according to hydraulic characteristics of flow around joint revetment. At a later study, if additional experiments about effect of flood plane and various types of barrier is applied, it is expected that rational design method with stability of joint revetment can be proposed.

Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm (Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2011
  • Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.

Community Formation Comparison of Herbaceous Perennials planted on Urban Stream Levee Slope (도시하천 제방사면에 식재한 다년생 초본류의 군락 형성 비교)

  • Yang, Hong-Mo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.1
    • /
    • pp.133-148
    • /
    • 2014
  • In order to investigate community formation ability, herbaceous perennials such as Miscanthus sacchariflorus Bentham, Miscanthus sinensis var. purpurascens Rendle, Imperata cylindrica Linne, Pennisetum alopecuroides (L.) Spreng. and Arundinella hirta Tanaka were planted in April 2009 at the levee slope of Gwangju Stream in South Korea. Miscanthus sacchariflorus Bentham, Miscanthus sinensis var. purpurascens Rendle, Imperata cylindrica Linne and Pennisetum alopecuroides (L.) Spreng. which grew in pots for two years and divided rhizomes of Arundinella hirta Tanaka gathered from fields were employed. Weeds growing on the experiment sites were removed twice a year until 2011 when the plant species were formed into community. Weeds were not eradicated during 2012 and 2013 to observe community sustainability of the species. T-tests on stem numbers and heights in May, July and September were conducted between 2011 and 2012, and between 2012 and 2013. Stem numbers of the five species in 2012 were significantly reduced(p<0.001) compared with those in 2011, which were attributed to weed growth in 2012. Heights of Miscanthus sinensis var. purpurascens Rendle, Imperata cylindrica Linne, Pennisetum alopecuroides (L.) Spreng. and Arundinella hirta Tanaka in 2012 were significantly lower than those in 2011(p<0.001), which resulted from weed invasion. Heights of Miscanthus sacchariflorus Bentham in May and July 2012 were significantly decreased compared with those in 2011(p<0.001), however, heights of Miscanthus sacchariflorus Bentham in September 2012 were almost the same as those in 2011(p>0.05). Miscanthus sacchariflorus Bentham was able to compete against weeds in September 2012. Stem numbers and heights of Miscanthus sacchariflorus Bentham, Miscanthus sinensis var. purpurascens Rendle, Imperata cylindrica Linne and Pennisetum alopecuroides (L.) Spreng. in 2013 were similar to those in 2012(p>0.05). However, stem numbers and heights of Arundinella hirta Tanaka in 2013 were significantly decreased compared with those in 2012(p<0.001). After community formation, Miscanthus sacchariflorus Bentham, Miscanthus sinensis var. purpurascens Rendle, Imperata cylindrica Linne and Pennisetum alopecuroides (L.) Spreng. were able to maintain its community without weed removal. However, Arundinella hirta Tanaka was unable to establish its community due to the weed growth. Miscanthus sacchariflorus Bentham, Miscanthus sinensis var. purpurascens Rendle, Imperata cylindrica Linne are more suitable to stream levee slope environment in terms of community formation and maintenance, stream landscape enhancement and slope erosion control.

The Study of Correlation between Riparian Environment and Vegetation Distribution in Nakdong River (낙동강의 하천환경과 식생분포특성의 상관성 조사연구)

  • Kim, Eun Jin;Cho, Kang Hyun;Kang, Joon Gu
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.321-330
    • /
    • 2014
  • This study was performed to investigate relation between riparian vegetation and environmental factor and to predict riparian vegetation succession in Nakdong river, which is typical sand river in Korea Peninsula. We searched 5 natural levee and installed 84 quadrats in Nakdong river near by Andong city. Also, We analyzed flora, vegetation cover degree, topography, soil moisture, organic content, pH, electrical conductivity and soil texture. According to the result of CCA (canonical correspondence analysis), which considered both investigated vegetation data and environmental factor, vegetation were divided down three groups, and each group was difference by height above ordinary water level, organic content and sand. In addition, the most powerful factor was indicated the height above ordinary water level.

An Experiment on Flow Simulation Depending on Opening Configuration of Weir Using a Numerical Model (수치모형을 이용한 보의 개방구성에 따른 흐름모의 실험)

  • Kang, Tae Un;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This study investigated that the numerical experiment for analysis on free overtopping flow by a weir of levee type, as the first stage of the development of a numerical technique for prediction methodology based on a numerical model. Using 2-dimensional flow models, Nays2DH, we conducted numerical simulations based on existing experimental data to compare and verify the models. We firstly discussed the numerical reproducibility for the discontinued flow by weir shape, and calibrated the computational flow through preprocessing of channel bed. Further, we carried out and compared the simulations for prediction on the overtopping flow by the number of weir gates. As a result of simulations, we found that the maximum flow velocity of downstream of weir increases when the number of weir gates increases under the same cross sectional area of flow. Through such results, this study could present basic data for hydraulic research to consider the water flow and sediment transport depending on weir operation in the future work.

Verification of the Effectiveness of Hydraulic well through Large-scale Embankment Test (대형제방실험을 통한 Hydraulic well의 효용성 검증)

  • Park, Min-Cheol;Kim, Jin-Man;Moon, In-Jong;Jin, Yoon-hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.24-35
    • /
    • 2017
  • This paper reports the results of afield appliance study of the hydraulic well method to prevent embankment seepage, the large-scale embankment experiment and seepage analysis to examine the traits of the seepage pressure. The experimental procedure was focused on the pore pressure after examining the detected value of the pore pressure gage. The inner water levels of hydraulic well were compared with the pore pressure data, which were used to inspect the seepage variations. Two different large-scale experiments were conducted according to the installation points of the hydraulic wells. The decrease in seepage pressure reached a maximum of 37% from the experimental results. The experimental pore pressure results were similar to those of the analyses. In addition, the pore pressure oriented from the water level variations of the hydraulic well showed similar patterns between the experiment and analysis, but if the hydraulic well was deeper, the analyzed water levels were larger than the experimental values.

Long-Term Compressive Strength and Durability Properties of "CSG" Materials by Freezing-Thawing Test (동결융해시험에 의한 "CSG" 재료의 장기강도 및 내구 특성)

  • Jin, Guangri;Kim, Kiyoung;Moon, Hongduk;Quan, Hechun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.35-43
    • /
    • 2016
  • With the development of construction technology, constructions of dam and levee (dike) as well as the environmental problems are becoming issues. Recently, many countries have tried to develop and used CSG (Cemented Sand and Gravel), which needs fewer requirements than others in aggregates, constructability and ground condition during the dam construction. Mixing up with small amount of cement, CSG is able to increase the strength and proceed accelerated construction without artificial gradation adjustment of riverbed aggregate and crushed rock on construction site. Thus, CSG can minimize environmental damage resulted from quarries mining and reduce cost of construction. Unlike heat of hydration condition that regular concrete usually met, CSG exposes to repeated dry-wet and freezing and thawing environment. Thus, consider the importance of structure of dam or levee, intensive study on the durability of CSG is needed. In this study, freezing and thawing experiment was carried out to evaluate the durability of CSG. In results, the durability factor of CSG is 30~40 or >40 when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. The unconfined compressive strength is reduced to 30~50% or 40~70% when the amount of cement is $0.4{\sim}0.6kN/m^3$ or $0.8{\sim}1.0kN/m^3$, respectively. Taken together, the strength and durability of CSG is reliable when the amount of cement is over $0.8kN/m^3$.