• Title/Summary/Keyword: Leuconostoc lactis

Search Result 73, Processing Time 0.028 seconds

Identification of Psychrotrophic Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리한 저온성 젖산균의 동정)

  • So, Myung-Hwan;Kim, Young-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.495-505
    • /
    • 1995
  • The purpose of this study was to identify the psychrotrophic lactic acid bacteria isolated from kimchi, a Korean traditional fermented vegetable food. Thirty isolates of psychrotrophic lactic acid bacteria were isolated randomly from kimchi-A and kimchi-B which were fermented at $5{\sim}7^{\circ}C$ for 20 days and 50 days, respectively. Among 30 isolates of lactic acid bacteria isolated from kimchi-A, 14 isolates were identified as Leuconostoc mesenteroides subsp. mesenteroides, 12 as Leuconostoc mesenteroides subsp. dextranicum and 4 as Lactobacillus bavaricus. Among 30 isolates isolated from kimchi-B, 20 isolates were identified as Lactobacillus bavaricus, 3 as Leuconostoc mesenteroides subsp. mesenteroides, 3 as Leuconostoc lactis, 2 as Leuconostoc paramesenteroides and 2 as Lactobacillus homohiochii. Though these strains were identified as above, there were many strains whose sugar fermenting patterns and $NH_3$ producing ability from arginine were inconsistent with those described in Bergey's Manual of Systematic Bacteriology, and some strains identified as Leuconostoc mesenteroides subsp. mesenteroides and Leuconostoc mesenteroides subsp. dextranicum even disclosed such contradictions as the comparisons of sugar fermenting patterns between the strains of different subspecies were much more coincident than those between the same subspecies. As there were difficulties in classifying these psychrotrophic lactic acid bacteria according to the current taxonomic system, further studies were needed to solve these problems.

  • PDF

Optimization for the Lactic Acid Fermentation of Mixed Fruit and Vegetable Juices (젖산발효에 의한 혼합과채음료 제조의 최적화)

  • Kim, Su-Yeun;Choi, Eon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.303-310
    • /
    • 2002
  • An optimization for fermentation processes to make lactic acid juice with extracts from apples, carrots, celery, watercress, jujube and lycii (3 : 3 : 1 : 1/2 : 1 : 1/2) using co-cultures of Leuconostoc mesenteroides, Lactococcus lactis and Lactobacillus cellobiosus isolated from Dongchimi had been investigated on the emphasis of composition of sugars and sodium chloride at various temperatures. The concentration of sugars less than 25% and salt less than 0.8% did not affect remarkably the cell growth of lactic acid bacteria and acid formation during fermentation. The fermenting juice showed increases in the population of lactic acid bacteria and acidity, and decreases in population of coliform bacteria and sugar concentration with high cultural temperature. At $25^{\circ}C$ viscous substance was not formed as it had at $15^{\circ}C$. The optimum composition, based on the sensory evaluation, was determined to be oligosaccharide and 0.2% for sodium chloride. It took 3 days to produce the most preferable juice of pH 3.62 at $25^{\circ}C$. At the optimal state the fermented juice showed viable cell counts (cfu/mL) of exponential numbers 8 for lactic acid bacteria and 4 for yeast. Coliform bacteria which had been $5.6{\times}10^2\;cfu/mL$ at the beginning of fermentation were not detected.

Identification of LAB and Fungi in Laru, a Fermentation Starter, by PCR-DGGE, SDS-PAGE, and MALDI-TOF MS

  • Ahmadsah, Lenny S.F.;Kim, Eiseul;Jung, Youn-Sik;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Samples of Laru (a fermentation starter) obtained from the upper part of Borneo Island were analyzed for their lactic acid bacteria (LAB) and fungal diversity using both a culture-independent method (PCR-DGGE) and culture-dependent methods (SDS-PAGE and MALDI-TOF MS). Pediococcus pentosaceus, Lactobacillus brevis, Saccharomycopsis fibuligera, Hyphopichia burtonii, and Kodamaea ohmeri were detected by all three methods. In addition, Weissella cibaria, Weissella paramesenteroides, Leuconostoc citreum, Leuconostoc mesenteroides, Lactococcus lactis, Rhizopus oryzae/Amylomyces rouxii, Mucor indicus, and Candida intermedia were detected by PCR-DGGE. In contrast, Lactobacillus fermentum, Lactobacillus plantarum, Pichia anomala, Candida parapsilosis, and Candida orthopsilosis were detected only by the culture-dependent methods. Our results indicate that the culture-independent method can be used to determine whether multiple laru samples originated from the same manufacturing region; however, using the culture-independent and the two culture-dependent approaches in combination provides a more comprehensive overview of the laru microbiota.

Isolation of a Nisin-Producing Lactococcus lactis Strain from Kimchi and Characterization of its nisZ Gene

  • Lee, Kwang-Hee;Moon, Gi-Seong;An, Jong-Yun;Lee, Hyong-Joo;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.389-397
    • /
    • 2002
  • Bacteriocin-producing lactic acid bacteria were isolated from kimchi. One isolate producing the most efficient bacteriocin was identified and named Lactococcus lactis B2, based on the biochemical properties and 16S rDNA sequences. The B2 bacteriocin inhibited many different Gram positive bacteria including Lactococcus, Lactobacillus, Leuconostoc, Enterococcus, Streptococcus, and Staphylococcus, but did not inhibit Gram-negative bacteria. The bacteriocin was maximally produced at temperatures between $25^{\circ}C\;and\;30^{\circ}C$ and at the initial pH of 7.0. Ninety $\%$ of the activity remained after 10 min of heat treatment at $121^{\circ}C,\;and\;100\%$, after 1 h exposure to organic solvents. The bacteriocin was purified from culture supernatant by ammonium sulfate precipitation, CM Sepharose column chromatography, ultrafiltration, and finally, by reverse-phase HPLC. A 1.58-kb fragment was amplified from B2 chromosome by using a primer set designed from the published nisA sequence. Sequencing result showed that the fragment contained the whole nisZ and 5' portion of nisB, whose gene product was involved in postmodification of nisin. The upstream sequence, however, was completely different from those of reported nisin genes.

Lactic Acid Bacteria Strains Used as Starters for Kimchi Fermentation Protect the Disruption of Tight Junctions in the Caco-2 Cell Monolayer Model

  • Jin Yong Kang;Moeun Lee;Jung Hee Song;Eun Ji Choi;Da un Kim;Seul Ki Lim;Namhee Kim;Ji Yoon Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1583-1588
    • /
    • 2022
  • In this study, we investigated the effect of lactic acid bacteria (LAB) strains used as starters for kimchi fermentation, namely Lactococcus lactis WiKim0124, Companilactobacillus allii WiKim39, Leuconostoc mesenteroides WiKim0121Leuconostoc mesenteroides WiKim33, and Leuconostoc mesenteroides WiKim32, on the intestinal epithelial tight junctions (TJs). These LAB strains were not cytotoxic to Caco-2 cells at 500 ㎍/ml concentration. In addition, hydrogen peroxide (H2O2) decreased Caco-2 viability, but the LAB strains protected the cells against H2O2-induced cytotoxicity. We also found that lipopolysaccharide (LPS) promoted Caco-2 proliferation; however, no specific changes were observed upon treatment with LAB strains and LPS. Our evaluation of the permeability in the Caco-2 monolayer model confirmed its increase by both LPS and H2O2. The LAB strains inhibited the increase in permeability by protecting TJs, which we evaluated by measuring TJ proteins such as zonula occludens-1 and occludin, and analyzing them by western blotting and immunofluorescence staining. Our findings show that LAB strains used for kimchi fermentation can suppress the increase in intestinal permeability due to LPS and H2O2 by protecting TJs. Therefore, these results suggest the possibility of enhancing the functionality of kimchi through its fermentation using functional LAB strains.

The Antibacterial Activity of Garlic Juice Against Pathogenic Bacteria and Lactic Acid Bacteria. (병원성 세균과 젖산균에 대한 마늘의 항균작용)

  • 정건섭;강승연;김지연
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.32-35
    • /
    • 2003
  • This study was carried out to determine the inhibitory effect of garlic juice against Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri. Staphylococcus aureus, Streptococcus mutans, Virio. parahaemolyticus which are food pathogenic bacteria and Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus casei, Lactobacillus plantarum, Lactococcus. lactis, Leuconostoc mesenteroides which are lactic acid bacteria. An aqueous extract of garlic was bacteriocidal against Gram-positive and Gram-negative bacteria in all concentrations (0.1∼2.5(w/v)%) tested in this experiment. Especially 0.5(w/v)% garlic juice inactivated completely E. coli, S. typhimurium, S. flexineri, V. parahaemolyticus and 1.0(w/v)% garlic juice perfectly reduced P. aeruginosa, S. mutans. Generally, the experiment result indicate that garlic juice restrains the growth of the pathogenic bacteria better than the lactic acid bacteria. Therefore, garlic has potential for the preservation of processed foods.

Studies of Tarak, a Korean Traditional Fermented Milk Product (한국 전통 발효유 타락에 관한 연구 고찰)

  • Yoon, Jin A;Shin, Kyung-Ok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Tarak is a traditional Korean fermented milk product, which is prepared by the addition of rice wine to milk. The major microbial strains found in Tarak are Leuconostoc citreum, Lactobacillus plantarum, Lactococcus lactis, Saccharomyces cerevisiae, and Pichia kudriavzevii. The activity of lactic acid bacteria isolated from traditional Korean foods of Taraki against the carcinogenic bacteria Helicobacter pylori, Escherichia coli O157:H7, and Cronobacter sakazakii was characterized. Tarak extract significantly increased the proliferation of T-lymphocyte Jurkat (clone E6-1) cells. Tarak also inhibited the tyrosinase activity and melanin biosynthesis induced by an ${\alpha}$-melanocyte-stimulating hormone in pituitary intermediate lobe.

Alcohol Fermentation of Cheese Whey by Kluyveromyces marxianus and Lactic Acid Bacteria (Kluyveromyces marxianus와 젖산균의 혼합배양에 의한 치즈 유청의 알코올 발효)

  • Shim, Young-Sup;Kim, Jae-Won;Yoon, Sung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.161-167
    • /
    • 1998
  • Whey is by-product from natural cheese manufacturing process. For alcoholic fermentation, the initial lactose content and pH were adjusted to 4.5% and 4.2, respectively. Two strains of yeasts (Kluyveromyces marxianus, Saccharomyces cerevisiae) and seven strains of lactic acid bacteria (Lactobacillus brevis, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus lactis, Leuconostoc cremoris, Lactococcus lactis and Streptococcus thermophilus) were examined for their alcohol production and sensory acceptability. Ethanol content in the whey fermented by lactose-fermenting K. marxianus was 2.8% at 4th day of incubation and that fermented by nonlactose fermenting S. cerevisiae was 0.2%. In case of mixed fermentation with yeasts and tactic acid bacteria (LAB being inoculated at 0 hr), the maximum ethanol production was obtained in the sample inoculated at 16 hr by s. cerevisiae, and in the sample inoculated at 24 hr by K. marxianus. The optimum temperature was $37^{\circ}C$ for alcohol production under static condition. The production of $CO_2$ gas was higher in the whey fermented by K. marxianus (1.88%) than by S. cerevisiae (0.04%). The titratable acidity of the whey gradually increased with fermentation time and its content was 0.39% at 4th day of fermentation by K. marxianus and 0.52% by S. cerevisiae. Among seven strain of latic acid bacteria tested, Lactococcus lactis exerted synergistic effect for acid production with K. marxianus. Therefore, overall results suggestd that the combination of Lactococcus lactis and K. marxianus was best choice in fermenting cheese whey for edible purpose.

  • PDF

Growth Stimulation of Lactic Acid Bacteria by a Radish Component (무의 젖산균 증식촉진물질과 촉진작용)

  • Park, Kyung-Suk;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.528-534
    • /
    • 1992
  • Growth stimulatory material for lactic acid bacteria was extracted from radish and radish green juice and its growth stimulatory effect was tested. Dried methanol-precipitated growth stimulatory material was lightly grayish white powder, Its ash content is 44% and approximately 50% of the ash is sulfur. It has reddish brown color upon solubilization in water. The material had unchanged stimulatory effect when it was treated with proteinase or pectinase, or ashed. The growth stimulatory activity was dialyzable. The material was able to counteract the growth inhibitory effect of EDTA. When selected lactic acid bacteria were grown at $30^{\circ}C$ for 24 hours in peptone(0.5%)-yeast extract(0.5%)-glucose(2%) broth with and without 0.5% growth stimulatory material, the material stimulated the growth of Lactobacillus plantarum, L. fermentum, L. leichmanii, L. sake, L. brevis, L. acidophilus, L. casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, Streptococcus faecalis, S. lactis, S. cremoris and S. thermophilus by 19, 1833, 133, 444, 840, 32, 14, 18, 6, 17, 4, 5 and 4 times, respectively.

  • PDF