• 제목/요약/키워드: Let-7c miRNA

검색결과 10건 처리시간 0.028초

Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70

  • Jiang, Tao;Wang, Xingang;Wu, Weiwei;Zhang, Fan;Wu, Shifeng
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.345-351
    • /
    • 2016
  • Wound healing is a complex physiological process necessitating the coordinated action of various cell types, signals and microRNAs (miRNAs). However, little is known regarding the role of miRNAs in mediating this process. In the present study, we show that let-7c miRNA is decreased in heat-denatured fibroblasts and that inhibiting let-7c expression leads to the increased proliferation and migration of dermal fibroblasts, whereas the overexpression of let-7c exerts an opposite effect. Further investigation has identified heat shock protein 70 as a direct target of let-7c and has demonstrated that the expression of HSP70 in fibroblasts is negatively correlated with let-7c levels. Moreover, down-regulation of let-7c expression is accompanied by up-regulation of Bcl-2 expression and down-regulation of Bax expression, both of which are the downstream genes of HSP70. Notably, the knockdown of HSP70 by HSP70 siRNA apparently abrogates the stimulatory effect of let-7c inhibitor on heat-denatured fibroblasts proliferation and migration. Overall, we have identified let-7c as a key regulator that inhibits fibroblasts proliferation and migration during wound healing.

Expression and Preliminary Functional Profiling of the let-7 Family during Porcine Ovary Follicle Atresia

  • Cao, Rui;Wu, Wang Jun;Zhou, Xiao Long;Xiao, Peng;Wang, Yi;Liu, Hong Lin
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.304-311
    • /
    • 2015
  • Most follicles in the mammalian ovary undergo atresia. Granulosa cell apoptosis is a hallmark of follicle atresia. Our previous study using a microRNA (miRNA) microarray showed that the let-7 microRNA family was differentially expressed during follicular atresia. However, whether the let-7 miRNA family members are related to porcine (Sus scrofa) ovary follicular apoptosis is unclear. In the current study, real-time quantitative polymerase chain reaction showed that the expression levels of let-7 family members in follicles and granulosa cells were similar to our microarray data, in which miRNAs let-7a, let-7b, let-7c, and let-7i were significantly decreased in early atretic and progressively atretic porcine ovary follicles compared with healthy follicles, while let-7g was highly expressed during follicle atresia. Furthermore, flow cytometric analysis and Hoechst33342 staining demonstrated that let-7g increased the apoptotic rate of cultured granulosa cells. In addition, let-7 target genes were predicted and annotated by TargetScan, PicTar, gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our data provide new insight into the association between the let-7 miRNA family in granulosa cell programmed death.

건칠(乾漆)을 이용한 K562 만성 골수성 백혈병 세포주에서의 MicroRNA 발현 규명 (MicroRNA Expression in Leukemia Cell Line(K562 cell) Using Rhus Verniciflua Stokes)

  • 최현숙
    • 대한본초학회지
    • /
    • 제34권6호
    • /
    • pp.71-78
    • /
    • 2019
  • Objective : The purpose of the study was to identify expression profiling of miRNAs associated with cancers after treating allergen-removed Rhus Verniciflua Stokes and allergen-removed Rhus Verniciflua Stokes fumigaed Angelica gigas on leukemia cell lines. Methods : miRNA expression has been analyzed using miRNA array method through denaturation and hybridization after isolating the total RNA from leukemic cell line treated with 100 ㎍/㎖ of aRVS and aRVS-A each. Microarray expressions were interpreted as 'significant' on miRNAs when decreased less than 0.5 fold or increased more than 1.5 fold compared with the control group. Results : Among 158 miRNAs in total, 32 miRNAs were significantly presented in miRNAs expression. miRNA has been activated with a variety of genes for predicted targets, and the overexpressed miRNAs were categorized according to proliferation and metastasis of cancer in this study. The findings were reported that seven miRNAs (let-7b, miR-193a-5p, 296-3p, 26a, 22, 124a, 92b) showed significant expressions on proliferation and growth, seven miRNAs (miR-193a-5p, 26a, 200c, 183, 124a, 198, 210) presented meaningful expressions on invasion and metastasis, two miRNAs (let-7b, miR-210) were highly expressed on angiogenesis, five miRNAs (let-7b, miR-26a, 181d, 181c, 296-5p) related with apoptosis, and six miRNAs (let-7b, miR-200c, 183, 370, 124a, 191) were associated with prognosis of cancer and early diagnostic factors for cancer. Conclusion : The mechanism of miRNA takes a role in diagnosis, treatment, and prognotic factors for cancer as well. This study suggested that further detailed research on overexpression of specific miRNA should be carried out continuously in the future.

MicroRNA let-7c inhibits Bcl-xl expression and regulates ox-LDL-induced endothelial apoptosis

  • Qin, Bing;Xiao, Bo;Liang, Desheng;Li, Ye;Jiang, Ting;Yang, Huan
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.464-469
    • /
    • 2012
  • Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. MiRNA let-7 family is known to be involved in the regulation of cell apoptosis. However, the function of let-7 in ox-LDL induced ECs apoptosis and atherosclerosis is still unknown. Here, we show that let-7c expression was markedly up-regulated in ox-LDL induced apoptotic human umbilical cord vein endothelial cells (HUVECs). Let-7c over-expression enhanced apoptosis in ECs whereas inhibition of let-7c could partly alleviate apoptotic cell death mediated by ox-LDL. Searching for how let-7c affected apoptosis, we discovered that antiapoptotic protein Bcl-xl was a direct target of let-7c in ECs. Our data suggest that let-7c contributes to endothelial apoptosis through suppression of Bcl-xl.

Cloning and expression of lin-28 homolog B gene in the onset of puberty in Duolang sheep

  • Xing, Feng;Zhang, Chaoyang;Kong, Zhengquan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.23-30
    • /
    • 2019
  • Objective: Recent studies have demonstrated that lin-28 homolog B (LIN28B)/miRNA let-7 (let-7) plays a role in the regulation of pubertal onset in mammals. However, the role of LIN28B/let-7 in the onset of ovine puberty remains unknown. We cloned the Duolang sheep Lin28B cDNA sequence, detected the expression change of LIN28B, let-7a and let-7g in hypothalamus, pituitary and ovary tissues at three different pubertal stages. Methods: The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of LIN28B gene from Duolang sheep and the bioinformatics methods were applied to analyze the amino acid sequence of LIN28B protein. The mRNA expression levels of the LIN28B gene at different pubertal stages were examined by real time RT-PCR. Results: LIN28B cDNA of Duolang sheep was cloned, and two transcripts were obtained. The amino acid sequence of transcript 1 shares 99.60%, 98.78%, and 94.80% identity with those of goat, wild yak and pig, respectively. Strong LIN28B mRNA expression was detected in the hypothalamus, pituitary, ovary, oviduct and uterus, while moderate expression was found in the liver, kidney, spleen and heart, weak expression was observed in the heart. No expression was found in the lungs. Quantitative real-time PCR (QPCR) and western-blot analysis revealed that the LIN28B was highly expressed in the hypothalamus and ovary at prepuberty stages, and this expression significantly decreased from the prepuberty to puberty stages (p<0.05). Markedly increased levels of mRNA expression were detected in the pituitary from prepuberty to puberty (p<0.05) and then significantly decreased from puberty to post-puberty (p<0.05). The expression levels of let-7a and let-7g showed no significant changes among different pubertal stages (p>0.05). Conclusion: These results provided a foundation for determining the functions of LIN28B/let-7 and their role in the onset of sheep puberty.

MiRNA Synergistic Network Construction and Enrichment Analysis for Common Target Genes in Small-cell Lung Cancer

  • Zhang, Tie-Feng;Cheng, Ke-Wen;Shi, Wei-Yin;Zhang, Jin-Tao;Liu, Ke-Di;Xu, Shu-Guang;Chen, Ji-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6375-6378
    • /
    • 2012
  • Background: Small-cell lung cancer (also known as SCLC) is an aggressive form and untreated patients generally die within about 3 months. To obtain further insight into mechanism underlying malignancy with this cancer, an miRNA synergistic regulatory network was constructed and analyzed in the present study. Method: A miRNA microarray dataset was downloaded from the NCBI GEO database (GSE27435). A total of 546 miRNAs were identified to be expressed in SCLC cells. Then a miRNA synergistic network was constructed, and the included miRNAs mapped to the network. Topology analysis was also performed to analyze the properties of the synergistic network. Consequently, we could identified constitutive modules. Further, common target genes of each module were identified with CFinder. Finally, enrichment analysis was performed for target genes. Results: In this study, a miRNA synergistic network with 464 miRNAs and 2981 edges was constructed. According to the topology analysis, the topological properties between the networks constructed by LC related miRNAs and LC unrelated miRNAs were significantly different. Moreover, a module cilque0 could be identified in our network using CFinder. The module included three miRNAs (hsa-let-7c, hsa-let-7b and hsa-let-7d). In addition, several genes were found which were predicted to be common targets of cilque0. The enrichment analysis demonstrated that these target genes were enriched in MAPK signaling pathways. Conclusions: Although limitations exist in the current data, the results uncovered here are important for understanding the key roles of miRNAs in SCLC. However, further validation is required since our results were based on microarray data derived from a small sample size.

Alteration in miRNA Expression Profiling with Response to Nonylphenol in Human Cell Lines

  • Paul, Saswati;Kim, Seung-Jun;Park, Hye-Won;Lee, Seung-Yong;An, Yu-Ri;Oh, Moon-Ju;Jung, Jin-Wook;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제5권1호
    • /
    • pp.67-74
    • /
    • 2009
  • Exposures to environmental chemicals that mimic endogenous hormones are proposed for a number of adverse health effects, including infertility, abnormal prenatal and childhood development and above all cancers. In addition, recently miRNA (micro RNA) has been recognized to play an important role in various diseases and in cellular and molecular responses to toxicants. In this study, endocrine disrupting environmental toxicant, nonylphenol (NP) was treated to MCF-7 (Human breast cancer cell) and HepG2 (Human hepatocellular liver carcinoma) cell line at 3 hrs and 48 hrs time point and miRNA analysis using $mirVana^{TM}$ miRNA bioarray was performed and compared with total mRNA microarray data for the same cell line and treatment. Robust data quality was achieved through the use of dye-swap. Analysis of microarray data identifies a total of 20 and 11 miRNA expressions at 3 hrs and 48 hrs exposure to NP in MCF-7 cell line and a total of 14 and 47 miRNA expression at 3 hrs and 48 hrs exposure respectively to NP in HepG2 cell line. Expression profiling of the selected miRNA (let-7c, miR-16, miR-195, miR-200b, miR200c, miR-205, and miR-589) reveals changes in the expression of target genes related to metabolism, immune response, apoptosis, and cell differentiation. The present study can be informative and helpful to understand the role of miRNA in molecular mechanism of chemical toxicity and their influence on hormone dependent disease. Also this study may prove to be a valuable tool for screening potential estrogen mimicking pollutants in the environment.

Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines

  • Kotipalli, Aneesh;Banerjee, Ruma;Kasibhatla, Sunitha Manjari;Joshi, Rajendra
    • Genomics & Informatics
    • /
    • 제19권2호
    • /
    • pp.17.1-17.13
    • /
    • 2021
  • Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)-specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3'-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.

The role of microRNAs in synaptic development and function

  • Corbin, Rachel;Olsson-Carter, Katherine;Slack, Frank
    • BMB Reports
    • /
    • 제42권3호
    • /
    • pp.131-135
    • /
    • 2009
  • MicroRNAs control gene expression by inhibiting translation or promoting degradation of their target mRNAs. Since the discovery of the first microRNAs, lin-4 and let-7, in C. elegans, hundreds of microRNAs have been identified as key regulators of cell fate determination, lifespan, and cancer in species ranging from plants to humans. However, while microRNAs have been shown to be particularly abundant in the brain, their role in the development and activity of the nervous system is still largely unknown. In this review, we describe recent advances in our understanding of microRNA function at synapses, the specialized structures required for communication between neurons and their targets. We also propose how these advances might inform the molecular model of memory.

Screening of MicroRNA in Patients with Esophageal Cancer at Same Tumor Node Metastasis Stage with Different Prognoses

  • Zhao, Bao-Sheng;Liu, Shang-Guo;Wang, Tian-Yun;Ji, Ying-Hua;Qi, Bo;Tao, Yi-Peng;Li, Han-Chen;Wu, Xiang-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.139-143
    • /
    • 2013
  • Patients at the same pathological stage of esophageal cancer (EC) that received the same surgical therapy by the same surgeon may have distinct prognoses. The current study aimed to explore the possibility of differentially-expressed microRNAs (miRNAs) underlying this phenomenon. Samples were collected from EC patients at the same tumor node metastasis (TNM) stage but with different prognoses. Paracancerous normal tissues were taken as controls. The specimens were histopathologically analyzed. Differentially-expressed miRNAs were analyzed using real-time quantitative reverse transcription polymerase chain reaction. Compared with patients with poor prognosis, those with good prognosis exhibited 88 two-fold or more than two-fold increased miRNA fragments and 4 half-decreased miRNAs. The most noticeably up-regulated miRNAs included hsa-miR-31, hsa-miR-196b, hsa-miR-652, hsa-miR-125a-5p, hsa-miR-146b, hsa-miR-200c, hsa-miR-23b, hsa-miR-29a, hsa-miR-186, hsa-miR-205, hsa-miR-376a, hsa-miR-410, hsa-miR-532-3p, and hsa-miR-598, whereas the most significantly-downregulated miRNAs were hsa-let-7e, hsa-miR-130b, and hsa-miR-103. EC patients at same TNM stage but with different prognoses show differentially-expressed miRNAs.