• Title/Summary/Keyword: Leonov model

Search Result 21, Processing Time 0.02 seconds

Numerical analysis of viscoelastic flows in a channel obstructed by an asymmetric array of obstacles

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.161-167
    • /
    • 2006
  • This study presents results on the numerical simulation of Newtonian and non-Newtonian flow in a channel obstructed by an asymmetric array of obstacles for clarifying the descriptive ability of current non-Newtonian constitutive equations. Jones and Walters (1989) have performed the corresponding experiment that clearly demonstrates the characteristic difference among the flow patterns of the various liquids. In order to appropriately account for flow properties, the Navier-Stokes, the Carreau viscous and the Leonov equations are employed for Newtonian, shear thinning and extension hardening liquids, respectively. Making use of the tensor-logarithmic formulation of the Leonov model in the computational scheme, we have obtained stable solutions up to relatively high Deborah numbers. The peculiar characteristics of the non-Newtonian liquids such as shear thinning and extension hardening seem to be properly illustrated by the flow modeling. In our opinion, the results show the possibility of current constitutive modeling to appropriately describe non-Newtonian flow phenomena at least qualitatively, even though the model parameters specified for the current computation do not precisely represent material characteristics.

Flow-Induced Birefringence of Polymers in the Region of Abrupt Thickness Transition (두께가 급격히 변하는 영역에서 고분자 유동에 의한 복굴절)

  • Lee, H.S.;Isayev, A.I.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • A finite element analysis was carried out for a 4:1 planar contraction die for polymer melts using the viscoelastic constitutive equation of Leonov. Viscoelastic fluids showed significant differences in pressure drop and birefringence in contraction and expansion flows. The pressure drop was higher and the birefringence smaller in expansion than in contraction flow. The difference increased with increasing flow rate. The nonlinear Leonov model was shown to describe the viscoelastic effects observed in experiments.

One-dimensional modeling of flat sheet casting or rectangular Fiber spinning process and the effect of normal stresses

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 1999
  • This study presents 1-dimensional simple model for sheet casting or rectangular fiber spinning process. In order to achieve this goal, we introduce the concept of force flux balance at the die exit, which assigns for the extensional flow outside the die the initial condition containing the information of shear flow history inside the die. With the Leonov constitutive equation that predicts non-vanishing second normal stress difference in shear flow, we are able to describe the anisotropic swelling behavior of the extrudate at least qualitatively. In other words, the negative value of the second normal stress difference causes thickness swelling much higher than width of extrudate. This result implies the importance of choosing the rheological model in the analysis of polymer processing operations, since the constitutive equation with the vanishing second normal stress difference is shown to exhibit the characteristic of isotropic swelling, that is, the thickness swell ratio always equal to the ratio in width direction.

  • PDF

Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model

  • Youngdon Kwon;Kim, See-Jo;Kim, Seki
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.131-150
    • /
    • 2003
  • A new numerical algorithm of finite element methods is presented to solve high Deborah number flow problems with geometric singularities. The steady inertialess planar 4 : 1 contraction flow is chosen for its test. As a viscoelastic constitutive equation, we have applied the globally stable (dissipative and Hadamard stable) Leonov model that can also properly accommodate important nonlinear viscoelastic phenomena. The streamline upwinding method with discrete elastic-viscous stress splitting is incorporated. New interpolation functions classified as rational interpolation, an alternative formalism to enhance numerical convergence at high Deborah number, are implemented not for the whole set of finite elements but for a few elements attached to the entrance comer, where stress singularity seems to exist. The rational interpolation scheme contains one arbitrary parameter b that controls the singular behavior of the rational functions, and its value is specified to yield the best stabilization effect. The new interpolation method raises the limit of Deborah number by 2∼5 times. Therefore on average, we can obtain convergent solution up to the Deborah number of 200 for which the comer vortex size reaches 1.6 times of the half width of the upstream reservoir. Examining spatial violation of the positive definiteness of the elastic strain tensor, we conjecture that the stabilization effect results from the peculiar behavior of rational functions identified as steep gradient on one domain boundary and linear slope on the other. Whereas the rational interpolation of both elastic strain and velocity distorts solutions significantly, it is shown that the variation of solutions incurred by rational interpolation only of the elastic strain is almost negligible. It is also verified that the rational interpolation deteriorates speed of convergence with respect to mesh refinement.

Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations

  • Kwon Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.183-191
    • /
    • 2004
  • High Deborah or Weissenberg number problems in viscoelastic flow modeling have been known formidably difficult even in the inertialess limit. There exists almost no result that shows satisfactory accuracy and proper mesh convergence at the same time. However recently, quite a breakthrough seems to have been made in this field of computational rheology. So called matrix-logarithm (here we name it tensor-logarithm) formulation of the viscoelastic constitutive equations originally written in terms of the conformation tensor has been suggested by Fattal and Kupferman (2004) and its finite element implementation has been first presented by Hulsen (2004). Both the works have reported almost unbounded convergence limit in solving two benchmark problems. This new formulation incorporates proper polynomial interpolations of the log­arithm for the variables that exhibit steep exponential dependence near stagnation points, and it also strictly preserves the positive definiteness of the conformation tensor. In this study, we present an alternative pro­cedure for deriving the tensor-logarithmic representation of the differential constitutive equations and pro­vide a numerical example with the Leonov model in 4:1 planar contraction flows. Dramatic improvement of the computational algorithm with stable convergence has been demonstrated and it seems that there exists appropriate mesh convergence even though this conclusion requires further study. It is thought that this new formalism will work only for a few differential constitutive equations proven globally stable. Thus the math­ematical stability criteria perhaps play an important role on the choice and development of the suitable con­stitutive equations. In this respect, the Leonov viscoelastic model is quite feasible and becomes more essential since it has been proven globally stable and it offers the simplest form in the tensor-logarithmic formulation.

Numerical description of start-up viscoelastic plane Poiseuille flow

  • Park, Kwang-Sun;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • We have investigated the transient behavior of 1D fully developed Poiseuille viscoelastic flow under finite pressure gradient described by the Oldroyd-B and Leonov constitutive equations. For analysis we employ a simple $2^{nd}$ order discretization scheme such as central difference for space and the Crank-Nicolson for time approximation. For the analysis of the Oldroyd-B model, we also apply the analytical solution, which is obtained again in this work in terms of elementary solution procedure simpler than the previous one (Waters and King, 1970). Both models demonstrate qualitatively similar solutions, but their eventual steady flowrate exhibits noticeable difference due to the absence or presence of shear thinning behavior. In the inertialess flow, the flowrate instantaneously attains a large value corresponding to the Newtonian creeping flow and then decreases to its steady value when the applied pressure gradient is low. However with finite liquid density the flow field shows severe fluctuation even accompanying reversals of flow directions. As the assigned pressure gradient increases, the flowrate achieves its steady value significantly higher than its value during oscillations after quite long period of time. We have also illustrated comparison between 1D and 2D results and possible mechanism of complex 2D flow rearrangement employing a previous solution of [mite element computation. In addition, we discuss some mathematical points regarding missing boundary conditions in 2D modeling due to the change of the type of differential equations when varying from inertialess to inertial flow.

Numerical result of complex quick time behavior of viscoelastic fluids in flow domains with traction boundaries

  • Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.211-219
    • /
    • 2007
  • Here we demonstrate complex transient behavior of viscoelastic liquid described numerically with the Leonov model in straight and contraction channel flow domains. Finite element and implicit Euler time integration methods are employed for spatial discretization and time marching. In order to stabilize the computational procedure, the tensor-logarithmic formulation of the constitutive equation with SUPG and DEVSS algorithms is implemented. For completeness of numerical formulation, the so called traction boundaries are assigned for flow inlet and outlet boundaries. At the inlet, finite traction force in the flow direction with stress free condition is allocated whereas the traction free boundary is assigned at the outlet. The numerical result has illustrated severe forward-backward fluctuations of overall flow rate in inertial straight channel flow ultimately followed by steady state of forward flow. When the flow reversal occurs, the flow patterns exhibit quite complicated time variation of streamlines. In the inertialess flow, it takes much more time to reach the steady state in the contraction flow than in the straight pipe flow. Even in the inertialess case during startup contraction flow, quite distinctly altering flow patterns with the lapse of time have been observed such as appearing and vanishing of lip vortices, coexistence of multiple vortices at the contraction comer and their merging into one.

Finite element analysis of viscoelastic flows in a domain with geometric singularities

  • Yoon, Sung-Ho;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.99-110
    • /
    • 2005
  • This work presents results of finite element analysis of isothermal incompressible creeping viscoelastic flows with the tensor-logarithmic formulation of the Leonov model especially for the planar geometry with singular comers in the domain. In the case of 4:1 contraction flow, for all 5 meshes we have obtained solutions over the Deborah number of 100, even though there exists slight decrease of convergence limit as the mesh becomes finer. From this analysis, singular behavior of the comer vortex has been clearly seen and proper interpolation of variables in terms of the logarithmic transformation is demonstrated. Solutions of 4:1:4 contraction/expansion flow are also presented, where there exists 2 singular comers. 5 different types spatial resolutions are also employed, in which convergent solutions are obtained over the Deborah number of 10. Although the convergence limit is rather low in comparison with the result of the contraction flow, the results presented herein seem to be the only numerical outcome available for this flow type. As the flow rate increases, the upstream vortex increases, but the downstream vortex decreases in their size. In addition, peculiar deflection of the streamlines near the exit comer has been found. When the spatial resolution is fine enough and the Deborah number is high, small lip vortex just before the exit comer has been observed. It seems to occur due to abrupt expansion of the elastic liquid through the constriction exit that accompanies sudden relaxation of elastic deformation.

Examples of One-Dimensional Dissipative Instabilities in Simple Shear Flow as Predicted by Differential Constitutive Equations (단순전단유동에서 미분 구성방정식의 일차원적 불안정거동예)

  • 권영돈
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.192-202
    • /
    • 1995
  • 이연구에서는 유변학 구성방정식이 나타내는 일차원 불안정성의 몇가지 예를 보였 다. 안정성 해석을 위하여 맥스웰형 미분구성방정식 Giesekus, Leonov, Larson 모델을 선택 하였다. 나타난 불안정성은 단순전단유동에서의 정상유동곡석이 무제한적 단수증가성을 위 배할 때 발생한다. 단순전단유동에 부과된 섭동하에서 Giesekus와 Larson 모델이 일정영역 의 무델계수와 전단율속도값에서 불안정 거동은 관성력을 고려하지 않은 경우에도 발생함이 증명되었다. 끝으로 이러한 불안정 거동을 개선하는 몇가지 방법을 Leonv와 Giesekus 모델 에 대하여 제시하였다.

  • PDF