• Title/Summary/Keyword: Lentivirus

Search Result 59, Processing Time 0.028 seconds

Comparison of Analysis Methods for Detection of Replication Competent Virus and Functional Titers of HIV-l Based Lentivirus Vector (HIV-l 유래 렌티바이러스 벡터의 복제가능 바이러스 검출과 역가측정 분석방법 비교)

  • Chang Seok Kee;Oh Il Ung;Jeong Jayoung;Ahn Kwang Soo;Sohn Yeowon
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • Human Immunodeficiency Virus type 1 (HIV-l) based lentivirus vector has demonstrated great potential as gene therapy vectors mediating efficient gene delivery and long-term transgene expression in both dividing and nondividing cells. However, for clinical studies it must be confirmed that vector preparations are safe and not contaminated by replication competent lentivirus (RCL) related to the parental pathogenic virus, HIV-l. In this study, we would like to establish the method for titration and RCL detection of lentivirus vector. The titration was determined by vector expression containing the green fluorescent protein, GFP in transduced cells. The titer was $1{\times}10^7$ Transducing Unit/ml in the GFP expression assay and $8.9{\times}10^7$ molecules/ml in the real-time PCR. Also, for the detection of RCL, we have used a combination method of PCR and p24 antigen detection. First, PBS/psi and VSV-G region in the genomic DNA of transduced cells was detected by PCR assay. Second, transfer and expression of the HIV-1 gag gene was detected by p24 ELISA. In an attempt to amplify any RCL, the transduced cells were cultured for 3 weeks (amplification phase) and the supernatant of amplified transduced cell was used for the second transduction to determine whether a true RCL was present (indicator phase). Analysis of cells and supernatant at day 6 in indicator phase were negative for PBS/psi, VSV-G, and p24 antigen. These results suggest that they are not mobilized and therefore there are no RCL in amplification phase. Thus, real-time PCR is a reliable and sensitive method for titration and RCL detection of lentivirus vector.

Lentivirus-mediated Gene Transfer to Bovine Embryos

  • Kim, Young-Mi;Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Teo-An;Yom, Heng-Cherl;Ko, Dae-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Pronuclear DNA microinjection has been the most universal method in transgenic animal production but its success rate of transgenesis in mammals are extremely low. To address this long-standing problem, we used retrovirus- and lentivirus-based vectors carrying the enhanced green fluorescent protein (EGFP) gene under the control of ubiquitously active cytomegalovirus (CMV) promoter to deliver transgenes to bovine embryos. The rate of transgenesis was evaluated by counting EGFP positive blastocysts after injection of concentrated virus stock into the perivitelline space of the bovine oocytes in metaphase II. Among two different types of lentivirus vectors derived from FIV (feline immunodeficiency virus) and HIV (human immunodeficiency virus), the former scored the higher gene transfer efficiency; almost 100% of the blastocysts developed from the oocytes infected with FIV-based vector were EGFP positive. As for the vectors derived Com HIV lentivirus, the transgenesis rate of the blastocysts was reduced to 39%.

Knockdown of a Proliferation-inducing Ligand (PRIL) Suppresses the Proliferation of Gastric Cancer Cells

  • Cui, Jiu-Wei;Li, Yan;Wang, Chang;Yao, Cheng;Li, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.633-636
    • /
    • 2012
  • Purpose: PRIL (proliferation-inducing ligand) is a newly identified member of the tumor necrosis factor (TNF) family and modulates death ligand-induced apoptosis. Here, we investigated the effect of PRIL on cellular characteristics relating to tumor progression in human gastric cancer. Method: Recombinant lentivirus containing PRIL siRNA was constructed and then infected MGC803 and SGC7901 gastric cancer cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colony formation and cell cycle analysis were used to study the effect of PRIL knockdown on gastric cancer cell proliferation. Results: PRIL expression in lentivirus infected cells was significantly reduced as evidenced by quantitative real-time PCR. Cell viability and colony formation of MGC803 and SGC7901 cells were significantly hampered in PRIL knock-down cells. Moreover, the cell cycle was arrested at G2/M phase, elucidating the mechanism underlying the inhibitory effect of siRNA on cell proliferation. Conclusions: Our study indicated that PRIL functions in promoting cell growth, and lentivirus-mediated PRIL gene knockdown might be a promising strategy in the treatment of gastric cancer.

Lentivirus Mediated GOLPH3 shRNA Inhibits Growth and Metastasis of Esophageal Squamous Cancer

  • Wang, Qiang;Wang, Xian;Zhang, Can-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5391-5396
    • /
    • 2013
  • Aim: To investigate the role of Golgi phosphoprotein 3 (GOLPH3) in tumour growth and metastasis of esophageal squamous cancer. Methods: A lentiviral shRNA-vector was utilized to stably knockdown GOLPH3 in Eca-109 esophageal squamous cancer cells. mRNA transcription and protein expression of GOLPH3 were examined by real-time quantitative PCR and Western blotting, respectively. Cell proliferation activity was assessed by MTT assay and invasion and migration potentials by matrigel invasion and transwell motility assays. Results: Stable knockdown in the GOLPH3 cell line was established. PD-A gene expression was significantly suppressed by lentivirus-mediated RNAi, which resulted in reducing the capacity for cell proliferation, migration, invasion and adhesion in vitro. In vivo, GOLPH3 depletion resulted in inhibition of tumour growth, with stable decrease in the expression of GOLPH3 in tumor xenografts. Conclusions: Our findings suggest that lentivirus mediated silencing of the GOLPH3 gene has a significant anti-tumour effect on esophageal squamous cancer in vitro and in vivo. In addition, the results indicate that GOLPH3 might be an effective molecular target for gene therapy in esophageal squamous cancer.

Knockdown of UHRF1 by Lentivirus-mediated shRNA Inhibits Ovarian Cancer Cell Growth

  • Yan, Feng;Shao, Li-Jia;Hu, Xiao-Ya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1343-1348
    • /
    • 2015
  • Human UHRF1 (ubiquitin-like PHD and RING finger domain-containing 1) has been reported to be over-expressed in many cancers, but its role in ovarian cancer remains elusive. Here, we determined whether knockdown of UHRF1 by lentivirus-mediated shRNA could inhibit ovarian cancer cell growth. Lentivirus-mediated short hairpin RNAs (lv-shRNAs-UHRF1) were designed to trigger the gene silencing RNA interference (RNAi) pathway. The efficiency of lentivirus-mediated shRNA infection into HO-8910 and HO-8910 PM cells was determined using fluorescence microscopy to observe lentivirus-mediated GFP expression and was confirmed to be over 80 percent. UHRF1 expression in infected HO-8910 and HO-8910 PM was evaluated by real-time PCR and Western blot analysis. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability; flow cytometry and Hoechst 33342 assay was applied to measure cell cycle arrest and apoptosis. Cell invasion was assessed using transwell chambers. Our results demonstrated that the loss of UHRF1 promoted HO-8910 and HO-8910 PM cell apoptosis, while inhibiting cell proliferation. In addition, UHRF1 knockdown significantly inhibited the invasion of human ovarian cancer cells. In the present study, we also showed that depleting HO-8910 cells of UHRF1 caused activation of the DNA damage response pathway, with the cell cycle arrested in G2/M-phase. The DNA damage response in cells depleted of UHRF1 was illustrated by phosphorylation of CHK (checkpoint kinase) 2 on Thr68, phosphorylation of CDC25 (cell division control 25) on Ser 216 and phosphorylation of CDK1 (cyclin-dependent kinase 1) on Tyr 15.

Potent Anticancer Effects of Lentivirus Encoding a Drosophila Melanogaster Deoxyribonucleoside Kinase Mutant Combined with Brivudine

  • Zhang, Nian-Qu;Zhao, Lei;Ma, Shuai;Gu, Ming;Zheng, Xin-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2121-2127
    • /
    • 2012
  • Objective: Deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) mutants have been reported to exert suicide gene effects in combined gene/chemotherapy of cancer. Here, we aimed to further evaluate the capacity of the mutanted enzyme and its potential for inhibiting cancer cell growth. Methods: We altered the sequence of the last 10 amino acids of Dm-dNK to perform site-directed mutagenesis and constructed active site mutanted Dm-dNK (Dm-dNKmut), RT-PCR and western bloting studies were used to reveal the expression of lentivirus mediated Dm-dNKmut in a breast cancer cell line (Bcap37), a gastric cancer cell line (SGC7901) and a colorectal cancer cell line (CCL187). [3H]-labeled substrates were used for enzyme activity assays, cell cytotoxicity was assessed by MTT assays, cell proliferation using a hemocytometer and apoptosis induction by thenannexin-V-FITC labeled FACS method. In vivo, an animal study was set out in which BALB/C nude mice bearing tumors were treated with lentivirus mediated expression of Dm-dNKmut with the pyrimidine nucleoside analog brivudine (BVDU, (E)-5-(2-bromovinyl)-(2-deoxyuridine). Results: The Dm-dNKmut could be stably expressed in the cancer cell lines and retained its enzymatic activity. Moreover, the cells expressing Dm-dNKmut exhibited increased sensitivity in combination with BVDU, with induction of apoptosis in vitro and in vivo. Conclusion: These findings underlined the importance of BVDU phosphorylated by Dm-dNKmut in transduced cancer cells and the potential role of Dm-dNKmut as a suicide gene, thus providing the basis for future intensive research for cancer therapy.

Antitumor Activity of Lentivirus-mediated Interleukin -12 Gene Modified Dendritic Cells in Human Lung Cancer in Vitro

  • Ali, Hassan Abdellah Ahmed;Di, Jun;Mei, Wu;Zhang, Yu-Cheng;Li, Yi;Du, Zhen-Wu;Zhang, Gui-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.611-616
    • /
    • 2014
  • Objectives: Dendritic cell (DC)-based tumor immunotherapy needs an immunogenic tumor associated antigen (TAA) and an effective approach for its presentation to lymphocytes. In this study we explored whether transduction of DCs with lentiviruses (LVs) expressing the human interleukin-12 gene could stimulate antigen-specific cytotoxic T cells (CTLs) against human lung cancer cells in vitro. Methods: Peripheral blood monocyte-derived DCs were transduced with a lentiviral vector encoding human IL-12 gene (LV-12). The anticipated target of the human IL-12 gene was detected by RT-PCR. The concentration of IL-12 in the culture supernatant of DCs was measured by ELISA.Transduction efficiencies and CD83 phenotypes of DCs were assessed by flow cytometry. DCs were pulsed with tumor antigen of lung cancer cells (DC+Ag) and transduced with LV-12 (DC-LV-12+Ag). Stimulation of T lymphocyte proliferation by DCs and activation of cytotoxic T-lymphocytes (CTL) stimulated by LV-12 transduced DCs pulsed with tumor antigen against A549 lung cancer cells were assessed with methyl thiazolyltetrazolium (MTT). Results: A recombinant lentivirus expressing the IL-12 gene was successfully constructed. DC transduced with LV-12 produced higher levels of IL-12 and expressed higher levels of CD83 than non-transduced. The DC modified by interleukin -12 gene and pulsed with tumor antigen demonstrated good stimulation of lymphocyte proliferation, induction of antigen-specific cytotoxic T lymphocytes and antitumor effects. Conclusions: Dendritic cells transduced with a lentivirus-mediated interleukin-12 gene have an enhanced ability to kill lung cancer cells through promoting T lymphocyte proliferation and cytotoxicity.

In vitro Analysis of Glucocorticoid-induced Reporter Gene Expression Using Lentivirus System (Lentivirus System을 이용한 Glucocorticoid 유도 Reporter 유전자 발현의 분석)

  • Lee, Mi-Sook;Kim, Ji-Yeon;Her, Song
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • Glucocorticoid hormone regulates numerous physiological processes, such as regulation of metabolism, and anti-inflammatory and immunosuppressive actions via the activation and repression of gene expression. Here we described a lentivirus-based reporter vector system expressing red fluorescent protein (mRFP) or firefly luciferase (Luc) under the control of a glucocorticoid-responsive element that allows observation of the temporospatial pattern of glucocorticoid induced GR-mediated signaling on a cellular level. Moreover, usage of the chromatin insulator of the chicken ${\beta}$-globin locus induced a marked increase of sensitivity of glucocorticoid inducible promoter of a reporter gene. Use of this method will be applicable of screening for agonist and antagonist of GR in vitro, and also a reporter gene assay for the in vivo determination of the GR-mediated gene activation.

  • PDF

Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression

  • Seo, Eun-Jeong;Kim, Se-Woon;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.217-222
    • /
    • 2009
  • Controlled gene expression in specific cells is a valuable tool for gene therapy. We attempted to determine whether the lentivirus-mediated Tet-On inducible system could be applied to cancer gene therapy. In order to select the genes that induce cancer cell death, we compared the ability of the known pro-apoptotreic genes, Bax and tBid, and a cell cycle inhibitor, p21cip1/waf1, and determined that Bax was the most effective. For the cancer cell-specific expression of $rtTA2^S$-M2, we tested the matrix metalloproteinase-2 (MMP-2) promoter and determined that it is highly expressed in cancer cell lines, including SNU475 cells. The co-transduction of two lentiviruses that contain sequences for TRE-Bax and $rtTA2^S$-M2, the expression of which is controlled by the MMP-2 promoter, resulted in the specific cell death of SNU475, whereas other cells with low MMP-2 expression did not evidence significant cell death. Our data indicate that the lentivirus-mediated Tet-On system using the cancer-specific promoter is applicable for cancer gene therapy.

Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis

  • Zong, Xiangyun;Yang, Hongjian;Yu, Yang;Zou, Dehong;Ling, Zhiqiang;He, Xiangming;Meng, Xuli
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.595-600
    • /
    • 2011
  • Pax 6, a member of the paired box (Pax) family, has been implicated in oncogenesis. However, its therapeutic potential has been never examined in breast cancer. To explore the role of Pax6 in breast cancer development, a lentivirus based short hairpin RNA (shRNA) delivery system was used to knockdown Pax6 expression in estrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) breast cancer cells. Effect of Pax6 silencing on breast cancer cell proliferation and tumorigenesis was analyzed. Pax6-RNAi-lentivirus infection remarkably downregulated the expression levels of Pax6 mRNA and protein in MCF-7 and MDA-MB-231 cells. Accordingly, the cell viability, DNA synthesis, and colony formation were strongly suppressed, and the tumorigenesis in xenograft nude mice was significantly inhibited. Moreover, tumor cells were arrested at G0/G1 phase after Pax6 was knocked down. Pax6 facilitates important regulatory roles in breast cancer cell proliferation and tumor progression, and could serve as a diagnostic marker for clinical investigation.