• Title/Summary/Keyword: Lengthen Resistance

Search Result 3, Processing Time 0.017 seconds

An Experimental Study on the Roof Exposure Waterproofing Method of Tenon Jointing Type used Shiplap Rubberized Asphalt Color Sheet (반턱 고무 아스팔트 칼라 시트를 이용한 접합부 맞춤식 옥상 노출 방수공법에 관한 실험적 연구)

  • Lee, Jung-Hoon;Lee, Sun-Gyu;Kwak, Hyo-Ya;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.73-77
    • /
    • 2008
  • In this study, we would like to study on the application of roof exposure waterproofing method of joint stability through shiplap rubberized asphalt color sheet to complement problem of fracture, exfoliation and water leakage by existing roof exposure sheet waterproofing material joint weakness. Accordingly, examined basis performance and stability for joint that shiplap rubberized asphalt color sheet through test of that tensile strength, bonding strength, water permeability after bonding, peel resistance after bonding, lengthen resistance after bonding and hang resistance after bonding. The results of this study, waterproofing method to using shiplap rubberized asphalt color sheet is judged to solved fracture, exfoliation and water leakage problems happened in joint by problem was joint of exposure sheet by minimizing gap of joint being integration by shiplap.

  • PDF

Sportswear Physiological Optimization: Effects of Clothing ease, local heating and materiales (운동복의 기능성과 쾌적성에 관한 연구)

  • Lee Young Suk;An Tae Whan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.2 s.38
    • /
    • pp.127-138
    • /
    • 1991
  • The aim of the present stud)r has been to obtain new and additional data allolwing a better design of sports garments as well as a better choice among some materiales, through measure-ment of body surface changes in the upper trunk in movement, measurement on the effects of local heating on other parts of the body and measurement of the thermal resistance of 6 types of materials applied on a manikin. In the first experiment, the upper trunk was divided in 32 Parts, the surface of which was measured by the tape method for two upper limb positions: extension at $90^{\circ}$ and $180^{\circ}$. In the second experiment, skin temperature, local thermal sensations and whole body thermal sensation were measured every 5 minutes during 40 minutes. The four areas of the shoulder, abdomen, hande and feet were heated with the hot pack at $50^{\circ}C$. In the third experiment, the regional thermal resistance of the various materials selected, in two different cases of clothing ease, have been measured by using a thermal manikin. Resultes of experiments were: 1. Extensions cause the upper front part of the trunk surface to lengthen vertically while the back tends to stretch in width. 2. Skin temperatures of the upper limbs are influenced by the abdomen and shoulder boatings. The correlation between the whole body thermal sensation and the upper trunk thermal sensation is significantly asserted. 3. Ceramic and aluminium coated materiales offer the most effective thermal resistance; ease in clothing increases the thermal resistance at the breast and the abdomen as well as the clo value of the materials.

  • PDF

The Seismic Behavior of the Truss-Arch Structure with Seismic Isolation (면진 트러스-아치 구조물의 지진거동 분석)

  • Kim, Gee-Cheol;Kim, Kwang-Il;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2008
  • The various systems as the seismic resistance systems are used to reduce the seismic response of structure. And the seismic isolation system among them is the system that reduces the seismic vibration to be transmitted from foundation to upper structure. The purpose of isolation system is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF