• Title/Summary/Keyword: Length-Variable Member

Search Result 17, Processing Time 0.022 seconds

Evaluation on the Buckling Length of Circular Hollow Steel with Ball Joints (볼접합부를 갖는 원형강관부재의 좌굴길이 평가)

  • Kang, Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.5-11
    • /
    • 2012
  • The Buckling of the member under compressive stress is likely to occur, which is an important factor determining the strength of structures. The objective of this study was to evaluate the member buckling strength of a circular hollow steel with ball joints and to compare with design specifications for load resistance factor of our country. Furthermore, we would like to suggest basic data for evaluation of buckling length of a circular hollow steel with ball joints according to comparative analysis. These results were summarized as follows: Buckling stress according to the test results on buckling was 1.21 times greater than LSD specifications of our country estimated the entire length of circular hollow steel with ball joints as buckling length. In addition, it was 1.16 times greater than when estimating the length except the ball as buckling length and 1.14 times grater than when excluding the ball and sleeve. Therefore, when estimating buckling stress of circular hollow steel with ball joints, their buckling length may be measured by the length except ball and sleeve.

Configuration Control of Vaiable-Geometry Truss Structures (가변형상 트러스구조물의 자세제어)

  • Roh, Tae-Hwan;Kim, Tae-Ik;Park, Hyun-Chul;Kwon, Young-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2854-2865
    • /
    • 1996
  • The concept of variable-geometry truss structure(VGTS) is introduced as a class of actively controlled adaptive structure. VGTS can purposefully vary its geometric configurations by changing the lengths of some members of the structure. General kinematics and inverse kinematics of a statically determinate VGTS(variable geometry truss structure) are studied. The solution technique is based on the Jacobian matrix obtained via joint equilibrium equations. Pseudoinverse control method is applied to resolve the redundancy of a large VGTS. two types of actuator layout of octahedral type VGTS, VG truss and Stewart platform, are compared. Introducing the concept of performance index, Stewart platform based layout was found to has less consumption energy and manipulation time. A functional VGTS model with 3 octahedral modules is designed and manufactured for the labaratory demonstration. Six vertically located length-variable members are used to create general 6 d.o.f. motions.

Theoretical Stiffness of Cracked Reinforced Concrete Elements (철근콘크리트 부재의 균열 후 강성 이론)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.79-88
    • /
    • 1999
  • The purpose of this paper is to develop a mathematical expression for computing crack angles based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed to possess a series of potential crack planes represented by a number of differential truss elements. Depending on the boundary condition, a constant angle truss or a variable angle truss is employed to model the cracked structural concrete member. The truss models are then analyzed using the virtual work method of analysis to relate forces and deformations. Rigorous and simplified solution schemes are presented. An equation to estimate the theoretical crack angle is derived by considering the energy minimization on the virtual work done over both the shear and flexural components the energy minimization on the virtual work done over both the shear and flexural components of truss models. The crack angle in this study is defined as the steepest one among fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The theoretical crack angle predictions are validated against experimentally observed crack angle reported by previous researchers in the literature. Good agreement between theory and experiment is obtained.

Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib (리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동)

  • Han, Sang Whan;Yeo, Seung Min;Kim, Wook Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.53-62
    • /
    • 2005
  • The purpose of this study is to improve the seismic behavior of the bracing members. Lee and Goel's (1987) concrete filling in the hollow structural section (HSS) reduced the severity of local buckling and increased the fracture life. However, concrete filling in the HSS did not prevent the occurrence of local buckling in the midsection of the bracing member, which resulted in continuous strength degradation. This study investigated the seismic behavior of the concrete-filled HSS bracing member, which is reinforced by ribs in the midsection of the bracing member. The main variable of the specimens is rib length. The test results showed that buckling mode, cyclic compression strength, and energy dissipation capacity of the bracing members were affected by rib length. Specimen reinforced with ribs with a length of 63% had better structural performance.

A Study for Fatigue Crack Propagation Behavior of KS50N Rail Steel under Welding Line (KS50N Rail 용접부의 피로균열 성장거동)

  • 박제용;지용찬;김진성;정경희
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.553-559
    • /
    • 1998
  • This thesis studied to evaluate the fatigue behavior and propagation of rail steel under welding line. Test of crack growth was performed by all member of rail under constant amplitude loading at the structures laboratory in Hongik University. The effect of the following parameters with initiated crack length on the bottom edge of rail were studied. Here, fracture mechanics mode is opening mode. and Testing Material is KS50N Rail. From analysis and experimented result on the three Point bending in the lab, This paper presented a effect of crack growth , shape and remaining service life. Further more, according to the variable crack length, variable section and the ratio of section the fatigue behavior and propagation were studied.

  • PDF

Reducing the wind pressure at the leading edge of a noise barrier

  • Han, Seong-Wook;Kim, Ho-Kyung;Park, Jun-Yong;Ahn, Sang Sup
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.185-196
    • /
    • 2020
  • A method to reduce the wind pressure at the leading edge of a noise barrier was investigated by gradually lowering the height of a member added to the end of the noise barrier. The shape of the lowered height of the added member was defined by its length and slope, and the optimal variable was determined in wind tunnel testing via the boundary-layer wind profile. The goal of the optimal shape was to reduce the wind pressure at the leading edge of the noise barrier to the level suggested in the Eurocode and to maintain the base-bending moment of the added member at the same level as the noise-barrier section. Using parametric wind tunnel investigation, an added member with a slope of 1:2 that protruded 1.2 times the height of the noise barrier was proposed. This added member is expected to simplify, or at least minimize, the types of column members required to equidistantly support both added members and noise barriers, which should thereby improve the safety and construction convenience of noise-barrier structures.

Flexural Stiffness Effects on Constant Depth PC Segmental Bridge Constructed by Free Cantilever Method (균일한 단면 높이를 갖고 FCM 공법으로 시공되는 PC 세그멘탈교량의 거동에 대한 휨강성의 영향)

  • Lee, Jae Hoon;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.1-11
    • /
    • 1993
  • Precast/Prestressed concrete segmental bridges with moderate range of span length normally have a constant section height for economic segment manufacturing. Inside sectional dimension is often controlled for design of non-prismatic section between supports when variable stiffness is required. It is usual, in the preliminary design stage, to adopt trial bridge sections by past experience or by approximately estimated member forces. Three bridge models of different member stiffness have been selected to investigate flexural stiffness effects on member forces for preliminary design stage. The selected bridge stiffness has been determined by the flexibility index from review of the practically usable sections.

  • PDF

Performance analysis tool for reinforced concrete members

  • Esmaeily, Asad;Peterman, Robert J.
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.331-346
    • /
    • 2007
  • A computer program was developed to analyze the non-linear, cyclic flexural performance of reinforced concrete structural members under various types of loading paths including non-sequential variations in axial load. This performance is significantly affected by the loading history. Different monotonic material models as well as hysteresis rules for confined and unconfined concrete and steel, some developed and calibrated against test results on material samples, were implemented in a fiber-based moment-curvature and in turn force-deflection analysis. One of the assumptions on curvature distribution along the member was based on a method developed to address the variation of the plastic hinge length as a result of loading pattern. Functionality of the program was verified by reproduction of analytical results obtained by others for several cases, and accuracy of the analytical process and the implemented models were evaluated against the experimental results from large-scale reinforced concrete columns tested under the analyzed loading cases. While the program can be used to predict the response of a member under a certain loading pattern, it can also be used to examine various analytical models and methods or refine a custom material model against test data.

Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis

  • Chen, Lian-meng;Hu, Dong;Deng, Hua;Cui, Yu-hong;Zhou, Yi-yi
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1031-1043
    • /
    • 2016
  • Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis is studied in this paper. First, the element length was extracted as a fundamental variable, and the relationship between element length change and element internal force was established. By setting all pre-stresses in active cables to zero, the equation between the pre-stress deviation in the passive cables and the element length error was obtained to analyze and evaluate the error effects under different construction schemes. Afterwards, based on the probability statistics theory, the mathematical model of element length error is set up. The statistical features of the pre-stress deviation were achieved. Finally, a cable-strut tensile structure model with a diameter of 5.0 m was fabricated. The element length errors are simulated by adjusting the element length, and each member in one symmetrical unit was elongated by 3 mm to explore the error sensitivity of each type of element. The numerical analysis of error sensitivity was also carried out by the FEA model in ANSYS software, where the element length change was simulated by implementing appropriate temperature changes. The theoretical analysis and experimental results both indicated that different elements had different error sensitivities. Likewise, different construction schemes had different construction precisions, and the optimal construction scheme should be chosen for the real construction projects to achieve lower error effects, lower cost and greater convenience.

Reliability Analysis of Temporary Structures Considering Uncertainty in Rotational Stiffness at Member Joints (부재 연결부 회전 강성의 불확실성을 고려한 가설 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.87-94
    • /
    • 2019
  • This study deals with the reliability analysis approach of the temporary structure that can consider the uncertainty in rotational stiffness at the joints of the members, for which the semi-rigid connections are modelled as rotational spring and its coefficient is treated as a random variable following uniform distribution. In addition, this study introduces a computational procedure of the effective length coefficient for more accurate buckling load according to connection conditions of the supporting members attached to the joint. From the results of this study, it can be seen that the failure probability of the joint-hinge model (Case 1) presented in the design standard is higher than that of the practical model (Case 5) considering the rotational stiffness at the joints. This implies that the design standard leads to a conservative design of the temporary structure. The results also confirmed that the failure probability of the vertical member, i.e., the most critical member, can be further reduced when the base connection is provided with a fixed end. The comparative results between FORM, SORM and MCS further demonstrated that FORM can have a high level of numerical efficiency while ensuring the accuracy of the solution, compared with SORM and MCS. Based on these results, the proposed approach can be used as an accurate and efficient reliability analysis method of the three dimensional temporary structure.