• Title/Summary/Keyword: Length ratio of pile

Search Result 75, Processing Time 0.03 seconds

Incremental filling ratio of pipe pile groups in sandy soil

  • Fattah, Mohammed Y.;Salim, Nahla M.;Al-Gharrawi, Asaad M.B.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.695-710
    • /
    • 2018
  • Formation of a soil plug in an open-ended pile is a very important factor in determining the pile behavior both during driving and during static loading. The degree of soil plugging can be represented by the incremental filling ratio (IFR) which is defined as the change in the plug length to the change of the pile embedment length. The experimental tests carried out in this research contain 138 tests that are divided as follows: 36 tests for single pile, 36 tests for pile group ($2{\times}1$), 36 tests for pile group ($2{\times}2$) and 30 pile group ($2{\times}3$). All tubular piles were tested using the poorly graded sand from the city of Karbala in Iraq. The sand was prepared at three different densities using a raining technique. Different parameters are considered such as method of installation, relative density, removal of soil plug with respect to length of plug and pile length to diameter ratio. The soil plug is removed using a new device which is manufactured to remove the soil column inside open pipe piles group installed using driving and pressing device. The principle of soil plug removal depends on suction of sand inside the pile. It was concluded that the incremental filling ratio (IFR) is changed with the changing of soil state and method of installation. For driven pipe pile group, the average IFR for piles in loose is 18% and 19.5% for L/D=12 and 15, respectively, while the average of IFR for driven piles in dense sand is 30% and 20% for L/D=12 and L/D=15 respectively. For pressed method of pile installation, the average IFR for group is zero for loose and medium sand and about 5% for dense sand. The group capacity increases with the increase of IFR. For driven pile with length of 450 mm, the average IFR % is about 30.3% in dense sand, 14% in medium and 18.3% for loose sand while when the length of pile is 300 mm, the percentage equals to 20%, 17% and 19.5%, respectively.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

The Effect of Pile Length on the Handle and Physical Properties of Velvet (Velvet의 pile 길이가 촉감 및 물리적 특성에 미치는 영향)

  • 장정애;류덕환
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • Using the acetate velvet and viscose velvet whose pile lengths were sheared as 1.45, 1.55, 1 65, 1.75, 1.85, 1.90mm under the condition equating the weaving process of ground fabric, the conclusions were as follows through the results of the sensory assessments estimated by women students in our university and the physical properties, H. V and T. H. V obtained by KES-F system. 1. In the sensory assessments estimated by the method of paired comparison and ranking of samples, the longer pile length was, the more the hand values of smoothness, softness, thickness, heaviness increased on the whole. 2. The H V. and T. H. V. measured by KES-F system were as follows; Kohi increased to pile length 1.85mm and then decreased a little at 1.90mm. hummer increased as pile length was longer. Fukurami increased to pile length 1.75mm and then decreased gradually as pile length was longer. Total hand value increased gradually from 1. 45mm to 1.85mm, had the top value at 1.85mm, and then decreased a little at 1.90mm. 3. In the results of summarizing $\ulcorner$the physical properties correlated closely with the H. V obtained by sensory assessments$\lrcorner$ and tithe Physical properties correlated closely with the H. V. and T. H. V obtained by KES-F systems, it showed that all the sensory properties correlated closely with compressive energy, flexural rigidity, thickness, weight and pile ratio in the former and that the physical properties correlated closely with each H V and T. H. V were different in the latter. 4. It showed that factor 1 was related to compressive energy, thickness, weight, pile ratio, factor 2 was related to recovery energy, compressive resilience, compressive index, and factor 3 was related to compressive recovery ratio in the result of factor analysis. 5. In the multiple repression analysis, the expressions of all sensory properties had compressive ratio, frictional coefficient in the regression expressions of $\ulcorner$H. V. obtained by sensory assessments$\lrcorner$, while the expressions of each H. V. and different physical properties in the regression expressions of $\ulcorner$H. V. obtained by KES-F system$\lrcorner$.

  • PDF

Analysis of Optimized Column-pile Length Ratio for Supplementing Virtual Fixed Point Design of Bent Pile Structures (단일 현장타설말뚝의 가상고정점 설계를 보완한 상부기둥-하부말뚝 최적 길이비 분석)

  • Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1915-1933
    • /
    • 2013
  • In this study, the virtual fixed point analysis and 3D fully modeling analysis for bent pile structures are conducted by considering various influencing factors and the applicability of the virtual fixed point theory is discussed. Also, the optimized column-pile length ratio is analyzed for supplementing virtual fixed point design and examining a more exact behavior of bent pile structures by taking into account the major influencing parameters such as pile length, column and pile diameter, reinforcement ratio and soil conditions. To obtain the detailed information, the settlement and lateral deflection of the virtual fixed point theory are smaller than those of 3D fully modeling analysis. On the other hand, the virtual fixed point analysis overestimates the axial force and bending moment compared with 3D fully modeling analysis. It is shown that the virtual fixed point analysis cannot adequately predict the real behavior of bent pile structures. Therefore, it is necessary that 3D fully modeling analysis is considered for the exact design of bent pile structures. In this study, the emphasis is on quantifying an improved design method (optimized column-pile length ratio) of bent pile structures developed by considering the relation between the column-pile length ratio and allowable lateral deflection criteria. It can be effectively used to perform a more economical and improved design of bent pile structures.

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

The Lateral Load Capacity of Bored-Precast Pile Depending on Injecting Ratio of Cement Milk in Sand (사질토 지반에서 시멘트밀크 주입비에 따른 매입말뚝의 수평지지력)

  • Hong, Won-Pyo;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.99-107
    • /
    • 2013
  • In order to investigation Lateral bearing capacity of bored-precast pile, we carried out the analysis of the relationship between Lateral load and horizontal displacement using the result of horizontal pile load test. The six piles injected cement milk of 50%, 70% and 100% of the embedded length of pile were used in the horizontal pile load test. The horizontal displacement, yielding load and horizontal bearing capacity are mainly affected by The injecting ratio of cement milk (injected length of cement milk/embedded length of pile). As the injecting ratio of cement milt is increased, the starting point of horizontal displacement in piles become close to the ground surface and the amount of horizontal displacement is decreased. Also, the horizontal bearing capacity and yielding load are highly increased with increasing the ration of cement milk. The horizontal bearing capacity and yielding load of bored pile with 1 of cement milk ratio are about two or three times those of pile with 0.5 of cement milk ratio.

Lateral Behavior Characteristics of Short Pile in Sands by Model Tests (모형실험에 의한 사질토 지반에서 단말뚝의 수평거동 특성)

  • Kim, Jin-Bok;Park, Jong-Un;Han, Dae-Hwan;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.366-376
    • /
    • 2008
  • The model tests of short pile with very small pile length/diameter(L/D) were performed in this paper. Varying the pile diameter, length, and the lateral loading point, the lateral resistance and behavior of very short pile were studied in this model tests. The experimental and analytical results are as follows. The lateral ultimate resistance of short pile in sands was the maximum at the point of h/L=0.75, regardless of pile length/diameter(L/D). As the pile diameter is larger, the lateral ultimate resistance of pile with L/D=1 decreases a little and the lateral resistance increases according to the ratio of pile length/diameter. As the lateral loads are acting on the pile, the displacement of pile head is maximum at the pile top of h/L=0, but minimum at the middle point of the pile. And if the loading point is under the middle of pile, the displacement of pile head occurs oposite in the loading direction, but its magnitude is very small.

  • PDF

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

Installation Methods of Micro-piles by the Length Ratio of Pile and the Depth of Rock Layer (파일길이비와 암반층의 위치에 따른 마이크로파일 설치방법)

  • Hwang, Tae-Hyun;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.5-20
    • /
    • 2011
  • A numerical analysis has been conducted to propose the effective installation methods of Micro-pile in a sandy soil or a soil with rock layer. As a result, the bearing capacity of reinforced soil by rigid Micro-pile has influence on a connection state of the tip of pile and surface of rock layer. But that by flexible Micro-pile has more influence on a penetration length of pile than the connection state of the tip of pile and surface of rock layer.

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.