• Title/Summary/Keyword: Length of shade

Search Result 86, Processing Time 0.019 seconds

Effect of Light Receiving rate on Growth and Quality of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.62-62
    • /
    • 2020
  • Ginseng is a shade-plant cultivated using shading facilities. However, at too low light levels, root growth is poor, and at high light levels, the destruction of chlorophyll reduces the photosynthesis efficiency due to leaf burn and early fall leaves. The ginseng has a lightsaturation point of 12,000~15,000 lux when grown at 15 to 20℃ and 9,500 lux at 25℃. This study was conducted to select the optimal light intensity of 3-year-old ginseng grown in blue-white film plastic house. The seeds were planted in the blue-white film plastic house with different light receiving rate (March 17, 2020). Between April and September, the average air temperature in the house was 20.4-20.7℃. Average soil temperature was 18.3℃-18.5℃. The chemical properties of the test soil was as follows. The pH level was 7.0-7.4, EC was 0.5-0.6 dS/m, OM was at the levels of 33.6-37.7 g/kg, P2O5 was 513.0-590.8 mg/kg, slightly higher than the allowable 400 mg/kg. The amount of light intensity, illuminance, and solar radiation in the blue-white film house was increased as the light-receiving rate increased and the amount of light intensity was found to be 9-14% compared to the open field, 8-13% illuminance and 9-14% solar irradiation respectively. The photosynthesis rate was the lowest at 3.1 µmolCO2/m2/s in the 9% light blue-white plastic house and 4.2 and 4.0 µmolCO2/m2/s in the 12% and 14% light blue-white plastic house, respectively. These results generally indicate that the photosynthesis of plants increases with the amount of light, but the ginseng has a lower light saturation point at high temperatures, and the higher the amount of light, the lower the photosynthetic efficiency. The SPAD (chlorophyll content) value decreased as the increase of light-receiving rate, and was the highest at 32.7 in 9% light blue-white plastic house. Ginseng germination started on April 11 and took 13-15 days to germinate. The overall germination rate was 82.9-85.8%. The plant height and length of stem were long in the 9% light-receiving plastic house. The diameter of stem was thick in the 12-14% light-receiving plastic house. In the 12% and 14% light-receiving plastic house, the length and diameter of taproot was long and thick, so the fresh weight of root per plant was 20 g or more, which was heavier than 16.9 g of the 9% light-receiving plastic house. The disease incidence (Alternaria blight, Gray mold and Damping-off etc.) rate were 0.9-2.7%. The incidence of Sclerotinia rot disease was 7.5-8.4%, and root rot was 0-20.0%. The incidence ratio of rusty root ginseng was 34.4-38.7% level, which was an increase from the previous year's 15% level.

  • PDF

Changes in Growth, Active Ingredients, and Rheological Properties of Greenhouse-cultivated Ginseng Sprout during its Growth Period (하우스에서 재배된 새싹인삼의 재배시기별 생육, 유효성분 및 물성의 변화)

  • Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Lee, Hee Chul;Kwon, A Reum;Kim, Hyun Ho;Won, Jun Yeon;Lee, Ka Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.2
    • /
    • pp.126-135
    • /
    • 2019
  • Background: The ginseng ginsenosides, which have various physiological activities, are known to be more abundant in the leaves than in the roots, and the consumers' interest in ginseng sprout as a functional vegetable has been increasing. Methods and Results: The aim of this study was to investigate the effects of growth period on growth properties, active ingredients and rheology of ginseng sprouts cultivated in a non-heated greenhouse equipped with a shade net for 60 days, starting from the end of May to the middle of July. The chlorophyll content of the leaves decreased, but their length and width increased with increasing cultivation days. In particular, growth increased significantly until 40 days, but only slightly after 50 days. The stem length did not increase greatly from the 20 th to the 30 th day of cultivation, but increased significantly from the 30 th to the 40 th day, and then further increased gradually. The weight of the leaves, stems, and roots increased slightly, but not change significantly. After 40 days of cultivation, the total ginsenoside content increased by 1.07 times in the leaves and decreased by 0.80 times in the roots with increasing cultivation days. The leaf contents of ginsenosides $Rg_1$, Re, $Rb_1$, Rc, $F_3$ and $F_4$ increased with increasing cultivation days. The rheological properties of ginseng sprout showed the greatest influence on stem hardening with increasing cultivation days. Conclusions: Therefore, based on the growth characteristics, active ingredients and physical properties, 40 days after sowing was considered to be an appropriate harvesting time for ginseng sprouts.

Effect of Shading and Supplemental Lighting for Greenhouse Cultivation of Cucumber in Summer Season (하절기 오이 온실재배 시 차광 및 보광 효과)

  • Jin Yu;Ji Hye Yun;So Yeong Hwang;Eun Won Park;Jeong Hun Hwang;Hyeong Eun Choi;Jeong Kil Koo;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • High solar radiation in summer season causes excessive respiration of crops and reduces photosynthesis. In addition, the rainy season, which mainly occurs in summer, causes a low light condition inside the greenhouse. A low light condition can reduce crop growth and yield. This study was conducted to evaluate the effect of shade and supplemental lighting on the growth and yield of cucumber during summer season. Cucumber grafted seedlings were transplanted in two plastic greenhouses on August 30, 2022. To reduce the light intensity inside the greenhouse, a 50% shading screen was installed in one greenhouse. Supplemental lighting was conducted from September 7, 2022 to October 20, 2022. HPS (high-pressure sodium lamp), W LED (white LED, red:green:blue = 5:3:2), and RB LED (combined red and blue LED, red:blue = 7:3) were used for supplemental lighting sources, and non-treated (nonsupplemental lighting) was as the control. The supplemental lighting was conducted before sunrise and after sunset for 2 hours with a photosynthetic photon flux density of 150 ± 20 µmol·m-2·s-1. The plant height, leaf length, leaf width, and SPAD value tended to increase in the shading group. RB LED increased stem diameter regardless of shading treatment. Fresh and dry weights of fruits were not significantly different in shading and supplemental lighting. Average fresh weight of fruits was not significantly different among supplemental lighting as the harvest date passed. In conclusion, in this study 50% shade treatment significantly improved the growth of cucumber during the summer season. In addition, the growth and fruit characteristics are better than the control without supplemental lighting. This study can be used as basic research data for applying supplemental lighting technology to cucumber cultivation.

Converting Lands that are damaged by Graveyards into Tree Burial Sites in order to Restore Green Areas (산지묘지의 훼손지 복원을 위한 수목장지로의 전환)

  • Woo, Jae-Wook;Byun, Woo-Hyuk;Kim, Hak-Beom;Park, Won-Kyoung;Kim, Min-Su;Norsyuhada, Norsyuhada
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.69-80
    • /
    • 2012
  • The purpose of this paper was to study the issues related to converting the graveyards within forests into spaces intended for tree burials by means of planting, given the situation that the graveyards have encroached on land and damaged the environment. For the reason, a field survey was performed to determine the width, length, and distance to the nearest tree of 205 graveyards in the capital area. Through this, it was determined that the domestic lands damaged by graveyards amounted to $862km^2$, including the areas that were deforested to manage the graves. This only confirms that land encroachment by graveyards is a serious issue. The methods for making tree burial sites were examined from the perspective of how to meet public demands given the graveyard's spatial distinctiveness. As a result, this study suggested different methods to establish tree burial sites according to the degree of transformation and the term of its formation. This study also classified the graveyards into three types, and identified the planting methods that harmonized the safe growth of trees and the scenic beauty of memorial places based on the standard. This is in order to plant trees that are shade-tolerant and suitable to the forest line, along with which other tree line was and also, to plant aesthetic trees around the empty space. Through applying the developed methods, this study established and monitored two exemplary sites in Yongin and Boryeng. Aesthetic trees were planted in Yongin site which was located in an open area, aod the shade-tolerant trees were planted in Boryeong, which was located in a forest area. As a result, the image of a garden appeared at Yongin site and the image of a tree colony harmonized with the near forest emerged at Boryeong site. Therefore, it is confirmed that the method of planting according to the distribution status of neighboring trees was effective. As a result of monitoring, mulching wood chips were suitable for sites that were small or easy to approach. This is because the weeds were controlled in Yongin site by mulching. Furthermore, by monitoring the growth of 11 species of vegetation, this study confirmed that low and cover-type vegetations were suitable for tree burial sites. In Boryeong site, the wild cherry trees, which were planted as adult trees, all died, and the tilling of snake's beard, which were planted as cover vegetation, was slow. Therefore, this study found that seedlings were more suitable to plant in forest graveyards than adult trees, which were large and difficult to approach, and it was effective to use the remaining lawn and form a low vegetation after the crown of trees had expanded to such places.

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.

Effects of Shading Rate, Rooting Media and Plant Growth Regulators on Rooting of Veronoca L. by Cuttings (삽목 번식 시 차광정도, 삽목용토 및 생장조절제 처리가 꼬리풀(Veronica L.)의 발근에 미치는 영향)

  • Cheon Young, Song;Ja Young, Moon;Jung Won, Sung;Byeong Seon, Park;Jae Ik, Nam;Jeong Min, Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.35-44
    • /
    • 2022
  • This study was conducted to develop a mass production for a commercial use by cutting of 4 kinds of V. glabrifolia Kitag., V. pusanensis Y.N.Lee, V. glabrifolia Kitag. × V. Spicata 'Alba' and V. spicata 'Ulster Blue Dwarf' × V. longifolia. Veronica L. Effects of shade, media and concentrations of plant growth regulators on the rooting of Veronica L. were examined. The rooting rate of V. glabrifolia Kitag. was higher as a 60% than the V. pusanensis Y.N.Lee as a 20% in the control of commercial media. In shading treatment, the rooting rate was highest at 30% or 60% shading, and the 30% shading was the best in number of root and root length, but the 90% shading was lower than no shading treatment. For cutting media, the rock wool and 100% perlite increased the rooting rate by more than 10% compared to commercial media, and increased the number of roots by 2 or 3 times. However the Cocopeat of media was lower of rooting rate, root number, and root length compared to another treatment. In the plant growth regulator treatment, the rate of rooting increased in all treatment compared to control, and was highest at IBA 1,000mg·L-1 as a 82.2% and NAA 200 or 400mg·L-1 as a 82.2% or 84.4% respectively, in the V. glabrifolia Kitag. × V. Spicata 'Alba'. However, the root number and root length was decreased as the concentration of growth regulators increased.

A Study for Use of Wild Rhododendron mucronulatum for. albiflorum as Landscape plant (야생 흰진달래의 조경식생화를 위한 연구)

  • 이기의;이우철;조현길;유시철
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.4
    • /
    • pp.73-85
    • /
    • 1991
  • Rhododendron mucronulatum for. albiflorum, native species is a shrub that has white flowers on May to June, and rare species endangered by people's rash digging or cutting. But its physiological ecological characteristics and propagation method are not being known at all. Therefore, this study was executed to utilize this species as the planting material for landscaping by analysing its habitat environment and growth form, and also experimenting its seed and vegetative propagation, and it field culture and utilization. The results are as follows; 1. The elevation, gradient and direction of this species were 295-1,350m, 10-36$^{\circ}$, northwest respectively. It was found that the species is shade-liking plant that grows under forest cover of average 51.33%. 2. The soil pH and water content of its habitat were 5.4, 25.41% respectively. The organic matter content was 6.29% that was higher than 3.2%, the average organic matter content of forest soil in Korea. 3. Representative plant community within which this species was living was Quercus mongolica community, and its main neighboring species were Lindea obtusiloba, Fraxinus sieboldiana, Rhus trichocarpa, Rhododendron Schlippenbachii, Rododendron mucronulatum. 4. The leaf length and width of this species were 39.18mm, 12.60mm respectively. This result showed that generally its leaf size was larger than that of R. micranthum, R. yedoense var. poukhanense and R. mucronulatum var. ciliatum and smaller than that of R. mucronulatum and R. schlippenbachii. 5. The whole size of its pollen was, as 59${\times}$61$\mu\textrm{m}$, the largest of plants of Rhododendron family including R. mucronulatum and R. mucronulatum var. ciliatum. 6. The result of seed germination experiment at intervals of 5$^{\circ}C$ from 15$^{\circ}C$ to 30$^{\circ}C$ presented the highest germination rate of 94.7% at 20$^{\circ}C$ numerically, but high percent germination at all temperature levels without significant difference. And the seed of this plant proved to be sun-liking seed at requiring dormancy in germination. 7. Through seed germination experiment by treatment of growth regulators such as GA. Thiourea and Kinetin under dark condition, it was found that the effect of GA treatment on germination increase and acceleration was the highest. 8. In greenwood cutting, rooted rate by treatment of various concentration of IBA and NAA on clay and vermiculite bed was not wholly high, but 100ppm plots of both IBA and NAA of clay bed showed relatively good rooted rate. 9. As result of field culture experiment for finding out optimum growth temperature and light intensity, growth conditions such as height, number of leaves, fresh weight and chlorophyll contents were the best at night/day temperature of 20/25$^{\circ}C$ and under 1/2sun. Also, the photosynthetic rate was the highest at 25$^{\circ}C$. Accordingly, it was found that optimum temperature and light intensity for growth of this plant are 25$^{\circ}C$ (day temperature), 50% of natural light respectively.

  • PDF

Comparison of Growth Characteristics and Quality of Korean Ginseng (Panax ginseng C.A. Meyer) by Different Shade Materials (해가림자재 종류별 고려인삼의 생육과 품질특성 비교)

  • Seong, Bong-Jae;Lee, Ka-Soon;Han, Seong-Ho;Kim, Sun-Ick;Kim, Gwan-Hou;Lee, Sox-Su;Won, Jun-Yeon;So, Jung D.;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.505-510
    • /
    • 2014
  • This research investigated growth of ginseng regard to sunshade materials and micro metrological phenomena under the sunshade material to product high quality ginseng. Followings are results of investigation of active ingredient from raw ginseng producted under the sunshade materials. The highest temperature under the sunshade material from June to August was measured from a Three-layered blue and one-layered black polyethylene net (TBOBFN) followed by a aluminium-coated polyethylene sheet (ACPS) and blue polyethylene sheet (BPS). The highest light penetration of $381.7{\mu}mol/s/m^2$ was obtained from the BPS at August, also the temperature was highest at the ginseng field. Growth of above ground part of 2~3 year old ginseng under the ACPS was the highest, followed by the ACPS and the BPS. In case of 4 year old ginseng, the ACPS and the BPS was the same, followed by the TBOBPN. Root length and diameter of 2~3 year old ginseng showed difference among treatments, but 4 year old ginseng was not showed difference. Meanwhile, the highest amount of root of 4 year old ginseng of $896g/m^2$ was obtained from ACPS. The total amount of ginsenocide of 4 year old ginseng under the ACPS was highest, followed by the BPS and the TBOBPN. Chromaticity of ginseng root under the TBOBPN was highest, followed by the ACPS and the BPS.

Selecting Plants for the Extensive Rooftop Greening Based on Herbal Plants (초화류를 중심으로한 관리조방적 옥상녹화용 식물 소재 선정)

  • Lee, Eun-Heui;Cho, Eun-Jin;Park, Min-Young;Kim, Dong-Wook;Jang, Seong-Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.84-96
    • /
    • 2007
  • The purpose of this study was to select herbaceous plants that can be used for presenting various views and biodiversity on the extensive rooftop greening. Experiment plots were constructed in July 2005 on the rooftop of the Administration Building in the Seoul Women's University. For this experiment, planters were used to design rooftop greening. The size of a planter is 500mm${\times}$500mm${\times}$100mm and each planter has the water storage plate in the lower part of it. The soil was constructed by mixing pearlite, vermiculite, cocopeat, and leaf mold in the ratio of 6 : 2 : 1 : 1. The plot was divided into the watered plot and the dry plot. Since each plot was constructed 2 times, finally 4 planters were constructed in total. One hundred species were used for the experiment and 9 plants per species were planted in each planter. Plants were organized according to types of plants and the experiment used 86 native herbaceous plants, 6 herbs, and 8 foreign plants. The plots were monitored once a month, from July to November 2005. The length and width of plants were tape-measured and covering rate was calculated by CAD program. "SPSS 10.1" was used for a statistical analysis. The result showed no significant difference between the watered plots and the dry plots. In cases of some plants, there were statistically significant differences between the watered planter and dry planter such as follows : Astilbe chinensis and Polygonatum odoratum which are shade plants were measured as the highest value on the watered pots, and Aquilegia buergeriana, Chrysanthemum zawadskii, Calendula arvensis and Gypsophila cerastioides D.Don which are sunny plants were measured as the highest value on the dry plots. According to the final analysis of the data collected and observed for growth condition during the first year of the research, 51 species including Prunella vulgaris var. lilacina and Veronica linaiaefolia in native herbaceous plant, 5 species with Lavandula angustifolia in herbs, and 3 species with Lantana camara and Muscari armeniacum in foreign plants showed the highest growth condition. In conclusion, it is suggested that various plants including sedums could be effectively used for extensive rooftop greening to improve landscape(a view) of the rooftop and increase ecological values.

Effect of Light Conditions on Photoinhibition of Ginseng and Tobacco (광조건이 인삼과 잎담배의 광저해에 미치는 영향)

  • ;Il Hou
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.126-130
    • /
    • 1985
  • Photoinhibition studies were conducted with ginseng (Panax ginseng) grown under shade and tobacco (N. tobaccum cv. Bulgaria) grown under full sunlight. The plants were exposed to light intensity of 580, 1280, 1770, 2580 ${\mu}$E/㎡/sec in normal air for 3.6 9 hours. Light saturation of ginseng was observed at 550 ${\mu}$E/㎡/sec and that of tobacco was at 1600 ${\mu}$E/㎡/sec. Tobacco exposed to high light intensity and long duration of light irradiation didn't show entire reduction in photosynthetic capacity. But in ginseng, 20.3% of photosynthesis was reduced in light intensity of 2,580 ${\mu}$E/㎡/sec during 9 hours. Light response in photosynthesis differed considerably between tobacco and ginseng, and ginseng exposed to high light intensity showed remarkable reduction in photosynthesis. The extent of photoinhibition of ginseng was dependent on the length of exposure to the high light intensity. Stomatal resistance of ginseng seemed not to be changed by photoinhibition but mesophyll resistance was increased.

  • PDF