• Title/Summary/Keyword: Leghorn Hen

Search Result 41, Processing Time 0.028 seconds

Cloning and Expression of a Yeast Cell Wall Hydrolase Gene (ycl) from Alkalophilic Bacillus alcalophilus subsp. YB380

  • Ohk, Seung-Ho;Yeo, Ik-Hyun;Yu, Yun-Jung;Kim, Byong-Ki;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.508-514
    • /
    • 2001
  • A stuructural gene (ycl) encoding novel yeast cell wall hydrolase, YCL, was cloned from alkalophilic Bacillus alcalophilus subsp. YB380 by PCR, and transformed into E. coli JM83. Based on the N-terminal and internal amino acid sequences of the enzyme, primers were designed for PCr. The positive clone that harbors 1.8 kb of the yeast cell wall hydrolase gene was selected by the colony hybridization method with a PCR fragment as a probe. According to the computer analysis, this gene contained a 400-base-paired N-terminal domain of the enzyme. Based on nucletide homology of the cloned gene, a 850 bp fragment was amplified and the C-terminal domain of the enzyme was sequenced. With a combination of the two sequences, a full nucleotide sequence for YCL was obtained. This gene, ycl, consisted of 1,297 nucleotides with 27 nucleotides with 27 amino acids of signal sequence, 83 redundant amino acids of prosequence, and 265 amino acids of the mature protein. This gene was then cloned into the pJH27 shuttle vector and transformed into the Bacillus subtilis DB104 to express the enzyme. It was confirmed that the expressed cell wall hydrolase that was produced by Bacillus subtilis DB104 was the same as that of the donor strain, by Western blot using polyclonal antibody (IgY) prepared from White Leghorn hen. Purified yeast cell wall hydrolase and expressed recombinant protein showed a single band at the same position in the Western blot analysis.

  • PDF

Survey on the Change of Sex Ratio with the Age of Pullets in Chicken (닭에 있어서 산란일령에 따른 성비의 변화에 관한 연구)

  • 홍기창;정선부;이근상;오봉국
    • Korean Journal of Poultry Science
    • /
    • v.7 no.1
    • /
    • pp.43-51
    • /
    • 1980
  • This study was carried out to investigate reasonable Period of egg production for incubation and to survey the change of sex ratio with the age as the preliminary work to make breed which can produce progeny in controlled sex ratio. The analyzed data was obtained from the record of incubations during 165-262 hys of age in White Leghorn. The results can be summarized as follows: 1. It was appeared that the fertility and hatchability were increased with the egg produced over 7 months of age. 2. It was tendency that the fertility and hatchability of the flock produced a more female chicken (40% flock) were higher than those of flock produced a more male chicken (60% flock). 3. The variation of sex ratio with the age was wider in 60% flock than in 40% flock 4. 60% flock showed heavier egg weight and body weight, in a while, 40% flock better sexual maturity and hen- housed egg production. 5. There was a negative correlation between sex ratio and henhoused egg production in 60% flock, but 40% flock appeared a positive correlation.

  • PDF

Studies on Meat Productivity and Functional Properties of Spent Hens (노폐계육의 생산성 및 가공특성에 관한 연구)

  • 송계원
    • Korean Journal of Poultry Science
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 1985
  • To learn more about the productivity of edible meat and its functional properties of spent hen, 60 White Leghorn fowls at 20 month of age were randomly divided into 6 groups, 10 hen for each group, and processed. As the productivity of edible meat, the yield of dressed carcass, giblets, cut-up meat, and breast and leg (thigh and drustick) muscles were determined. The approximate chemical composition, the content of salt-soluble protein, the emulsifying capacity and W.H.C. of breast and leg muscle were measured as the functional properties. The results were summarized as follows. 1. The average live weight of spent hen was 1,576.7g from which the yield of dressed carcass and giblets were 998.9g(63.4%) and 75.3g(4.8%) respectively. It means the yield of ready-to-cook form was 1,074.2g(68.2%) and the inedible byproducts was 502.5g (31.8%). 2. The average, weight of each part of cut-up chicken were: neck 41.0g(4.1%), wings 135.9g (13.6%), breast 276.7g (27.7%), legs 323.6g (42.4%). back 176.1g(17.6%) and the cutting-loss was 45.6g(4.6%). 3. The average weight of total edible muscle from breast and leg was 51.5g(85.86% of breast and leg cut weight) and the percentages based on the carcass and live weights were 51.6% and 32.7%, respectively. 4. The contents of H$_2$O, protein, fat and water-protein ratio of breast muscle were 72.95%, 20.54%, 1.59% and 3.55, respectively and those of leg muscle were 71.9%, 19.12%, 3.96% and 3.76%, respectively. 5. The salt-soluble protein contents of breast and leg muscle were 7.97% and 6.26% and their concentrations based on the total protein content were 38.8% and 32.74%, respectively. 6. The emulsifying capacity of breast and leg muscle was 43.23$m\ell$and 43.23$m\ell$, respectively. 7. The W. H. C- of breast and leg muscle was 54.23% and 52.61%, respectively.

  • PDF

Effect of Housing Systems of Cage and Floor on the Production Performance and Stress Response in Layer (계사 사육 형태가 산란계의 생산성과 스트레스 반응에 미치는 영향)

  • Sohn, Sea-Hwan;Jang, In-Surk;Son, Bo-Ram
    • Korean Journal of Poultry Science
    • /
    • v.38 no.4
    • /
    • pp.305-313
    • /
    • 2011
  • This study was conducted to investigate the effects of housing systems on the productivity and physiological response as stress indicators in White Leghorn chickens. The chickens subjected to the conventional cages had a significantly lower viability, hen-housed egg production, egg weight and body weight compared with those to the floor pens. However, the hens housed in the conventional cages had a shorter day of the first egg and a greater egg quality compared with those housed in the floor pens. In addition, this study was also investigated to identify biological markers for assessing the physiological response of chickens under stress conditions. As biological markers, the amount of telomeric DNA was analyzed by quantitative fluorescent in situ hybridization on the nuclei of cells. The DNA damage rate of lymphocytes was also quantified by the comet assay. The amount of telomeric DNA of the lymphocytes, kidney and spleen was significantly higher in the chickens under floor pens than those under conventional cages. The DNA damage also increased in chickens raised under conventional cages, as compared to the chickens under floor pens. As results, we conclude that the chickens housed in conventional cages have a greater stressful status than those housed in floor pens.

Studies on the Optimum Dietary Energy and Protein Levels in Laying Hen (산란계사료의 적정에너지 및 단백질수준에 관한 연구)

  • 이상진;이규호;정선부;오세정
    • Korean Journal of Poultry Science
    • /
    • v.14 no.1
    • /
    • pp.39-53
    • /
    • 1987
  • A total of 1,440 White Leghorn pullets hatched in summer and winter, aged 20 to 72 weeks were fed 9 rations differing in dietary protein (13, 15 and 17%) and energy (2,500, 2,700 and 2,900 kcal/kg) levels for a period of 52 weeks in order to evaluate the optimum dietary energy and protein levels for laying hens. As metabolizable energy level increased from 2,500 to 2,900 kcal/kg of feed egg production, daily feed and protein intake and egg shell quality decreased, but reverse was true for the daily energy intake, energy requirement and feed cost per kg egg, body weight gain, nutrients utilizability and abdominal fat accumulation, Egg weight, viability and egg yolk Pigmentation were not affected by the dietary energy level. On the other hand, as dietary protein level increased from 13 to 17%, egg production, egg weight, daily protein intake, protein requirement per kg egg and body weight gain icreased, but daily feed and energy intake, feed and energy requirement per kg egg, egg yolk pigmentation and dry matter utilizability decreased, and no significant difference in the feed cost per kg egg, viability and egg shell quality was observed among dietary protein levels. However: the hens fed 15% and 17% Protein diets did not show significant differences in egg production, egg weight and body weight gain. For the entire laying period of 52 weeks, metabolizable energy level of 2,500 kcal/kg of feed and 15% dietary protein level were considered to be adequate to support the optimum productivity.

  • PDF

Increasing Content of Healthy Fatty Acids in Egg Yolk of Laying Hens by Cheese Byproduct

  • Hwangbo, Jong;Kim, Jun Ho;Lee, Byong Seak;Kang, Su Won;Chang, Jongsoo;Bae, Hae-Duck;Lee, Min Suk;Kim, Young Jun;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.444-449
    • /
    • 2006
  • This study investigated the effects of dietary supplementation of cheese byproduct on performance, egg quality and fatty acid profile of egg yolk lipids from laying hens. One hundred five 30-wk-old White leghorn laying hens were randomly distributed into five groups of twenty one hens each and maintained in individual laying cages for 4 weeks. The hens were assigned to five treatments that consisted of corn-soybean meal based diets containing 0, 1, 3, 5 or 10% of cheese byproduct. Feed intake and rate of egg production of hens were not significantly different across the treatments during the whole experiment (p>0.05). Similarly, egg yolk cholesterol level, egg weight, Haugh's unit, eggshell thickness, color, and strength were not significantly different across the treatments (p>0.05). The amount of C16:0 in egg yolk was not significantly different across the treatments, but that of C18:0 decreased with increased cheese byproduct (p<0.01). Monounsaturated fatty acid (C16:1 and C18:1) content in egg yolk was similar across the treatments. Total CLA and cis-9, trans-11 CLA content increased linearly with increased cheese byproduct (p<0.001), while trans-10, cis-12 CLA amount was not significantly different across the treatments (p>0.05). Total saturated fatty acid (SFA) in the egg yolk was decreased as the level of cheese byproduct including CLA increased (p<0.01). However, the amount of unsaturated fatty acids (UFA) such as monounsaturated fatty acids (MUFA), n-3 polyunsaturated fatty acids (PUFA), n-6 PUFA, and total PUFAs in the egg yolk were not significantly different across the treatments (p>0.05). Therefore, the present results showed that cheese byproduct beneficially improved the fatty acid composition of concern to human health in the egg yolk without adverse effects on egg quality.

Production Traits and Stress Responses of Five Korean Native Chicken Breeds (한국토종닭 5품종의 생산능력 및 스트레스 반응 정도)

  • Cho, Eun Jung;Choi, Eun Sik;Jeong, Hyeon Cheol;Kim, Bo Kyung;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.47 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • This study presents the production characteristics and physiological characteristics of five Korean native chicken (KNC) breeds consisting of Hwanggalsaek Jaeraejong (HJ), Korean Rhode Island Red (KR), Korean White Leghorn (KL), Korean Brown Cornish (KC), and Korean Ogye (KO). We investigated their production performances, vitalities, and stress responses. We measured the survival rate, body weight, age at first egg-laying, hen-day egg production, egg weight, amount of telomeric DNA, heterophil-lymphocyte ratio (H/L ratio), and heat shock protein (HSP)-70, HSP-90α and HSP-90β gene expression levels for 493 KNCs. The survival rate was highest in KR, and lowest in KO. Body weights were steadily high in the order of KC, KR, HJ, KO and KL. Average hen-day egg production was highest in KL, and lowest in KC. While the amount of telomeric DNA was highest in KR, and lowest in KC. Furthermore, both the H/L ratio and the HSP-90β gene expression level were highest in KC, and lowest in KR. These results indicated that the KR breed was highly resistant to stress, whereas KC was more susceptible to stress. Taken together, it is considered that with improvements the KC breed would be more suited to be used as a Korean broiler breed while KL would be more appropriately used as a Korean layer breed. In addition, it is considered that the KR breed is appropriate to be used as a maternal chicken breeder based on good production capacity and excellent robustness, while the HJ breed is desirable to be improved as a high-quality Korean meat breed based on its excellent meat quality.

A Study on Development of New Products by Old Chicken Meat (노폐계(老廢鷄)를 이용(利用)한 육제품(肉製品) 개발(開發)에 관한 연구(硏究))

  • Han, Sung Wook;Lee, Kyu Seung;Chang, Kyu Sup;Jeon, Chang Kie
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.87-102
    • /
    • 1980
  • In order to investigate the utilization probability of two years old laying hen for W.L. and R.I.R. breeds, carcass weight and percentage were examined and dried old chicken meat products were manufactured for experiments. The results obtained are as follows. 1. Average living body weight were 1,635.40g for the W.L. breeds and 2,289.29g for the R.I.R. breeds and percentage carcass and lean meat for the W.L. were 58.73% and 43.95%, for the R.I.R. 60.34%, 41.98%, respectively. 2. In constitution percentage of carcass on different parts for W.L. and R.I.R. breeds, head were 4.13% and 3.94%, wing 9.97% and 8.62%, breast 32.54% and 20.94%, back 11.35% and 9.75%, thigh 30.75% and 31.34%, hypordermic fat 11.37% and 17.34%, respectively. 3. In constitution percentage of lean meat on different parts for W.L. and R.I.R. breeds, head were 4.03% and 3.95%, wing 9.47% and 9.79%, breast 39.37% and 38.14%, back 11.24% and 9.40%, thigh 36.16% and 38.74%, respectively. 4. In chemical composition of old chicken meat for W.L. breed, moisture was 68.18%, crude protein 22.80%, crude fat 2.70%, extract 5.15% and crude ash 1.18% and for R.I.R. breed, moisture was 68.04%, crude protein 22.18%, crude fat 3.13%, extract 5.45% and crude ash 1.21%. 5. Weight loss in steaming for W.L. at $121^{\circ}C$ for 30min., 60min., and 90min. were 54.91, 56.43 and 58.42%, respectively, and for R.I.R. were 45.23, 47.68 and 49.68%, respectively. 6. The yield of old chicken meat product per a hen were 253.01g for W.L. and 368.64g for R.I.R., the ratio for fresh meat weight and for carcass weight were 35.47% and 26.34% for W.L. breed and 38.25 and 26.83% for R.I.R. breed. 7. In chemical composition of old chicken meat product for W.L., moisture was 16.69%, crude protein 66.16%, crude fat 12.81%, crude ash 4.35%, and R.I.R., moisture 16.11%, crude protein 65.95%, crude fat 13.78% and crude ash 4.57%. 8. To investigate the physical properties which was main factor affecting the product quality, tensile strength, tear strength and elongation rate were measured. The adhesive force of the product made under pressure of $70kg/cm^2$ was similar to those of chipo which was the control product. 9. When measured the color of each protein product, lightness of the product pressed at $70kg/cm^2$ was better than that at $35kg/cm^2$, and the lightness of breast muscle product at $70kg/cm^2$ and chipo was not significant as 16.7% and 16.4%, respectively. Dominant wavelength of product pressed at $70kg/cm^2$ was very similar to chipo which was yellowish orange. 10. In the results of sensory evaluation test containing taste, color, chewing texture and oder of the meat product, when index of chipo as control product was 100, index of breast meat product was higher than that as 118.4, but miscellaneous product was 99.7 and thigh product was 96.2. 11. Summing up the results written above, the meat product utilizing two years old laying hen was compared favorably with its similar food such as chipo on the point of nutrition and physical properties as high protein food, therefore, it was thought that industrialization must be highly appropriate.

  • PDF

Comparison of Egg Production among Crossbreds with Resistance to Fowl Typhoid in Egg Type Chickens (산란계에 있어서 가금티푸스 저항성 계통의 산란성 비교 연구)

  • 오봉국;한성욱;김기석;한경택
    • Korean Journal of Poultry Science
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • The objects of this study were to develop a new strain which has resistance to fowl typhoid, high performance in laying, and producing brown shell eggs favored by domestic consumers. Several White Leghorn (WL) breeds known as possessing genetic resistance to fowl typhoid and several brown shell egg breeds such as susceptible to the disease were used to produce the controlled strains with cross mating between the strains within the breeds and the experimental strains with crossbreeding between the breeds. The crossbred strains were Chungnong(CN) 21, 22, 23, 24, 25 and 26. The controlled strains were ISA brown CC, Hyline brown CC and Lohman brown CC. The survival rates were 99.95% for chicks of age 0∼l7 weeks and 91% for adult chickens of age 18∼72 weeks. There was no difference in survival rate between the crossbred and the controlled strains. The means of age of lst egg laying were 147 to 148 days and no difference was observed between the crossbred and the controlled. The egg Production rates of a9e 18∼72 weeks were 83.76% far the crossbred strains and 77.82% for the controlled strains, which is significantly higher in the crossbred than controlled strains by 6%. The numbers of the hen housed egg Production of age 18∼72 weeks were 292.33 eggs for the crossbred strains and 271.31 eggs fur the controlled strains. The difference of 21 eggs more produced by the crossbred than by the controlled was statistically significant. The mean egg weights of age 18∼72 weeks were 64.32g for the crossbred strains and 60.73g for the controlled strains, and the difference of 3.59g was statistically significant. The feed conversion rates during the age of 18 to 72 weeks were 2.297 for the crossbred strains and 2.454 for the controlled strains. The crossbreds were reduced feed consumption by 157g for 1kg of egg Production which was statistically significant. Haugh unit(H$.$u) at the age of 72 weeks were 82.20 for the crossbred strains and 77.82 for the controlled strains. The crossbred strains were superior quality by 4.38 H$.$u. There were no significant differences in the yolk color and the eggshell thickness between the crossbred strains and the controlled strains. The eggshell color of the crossbred strains was light brown which is the medium color of the white eggshell strains and the brown eggshell strains. The body weights at the ages of 8, 12, 18, 42 and 71 weeks were not different between the crossbred strains and the controlled strains.

Comparison of Production Performance and Stress Response of White Leghorns Kept in Conventional Cages and Floor Pens (백색레그혼 종에 있어 케이지 사육과 평사 사육 간의 생산능력과 스트레스 반응 정도 비교)

  • Choi, Eun Sik;Cho, Eun Jung;Jeong, Hyeon Cheol;Kim, Bo Kyung;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.47 no.3
    • /
    • pp.189-197
    • /
    • 2020
  • This study was conducted to compare the production performance and stress response of chickens kept in the conventional cages and floor pens. 491 female White Leghorns were used in this study, and their production characteristics and stress response indicators were analyzed from 34 to 43 weeks of age. The results showed that there was no significant difference in survival rate, hen-day egg production, and body weight between the chickens kept in the conventional cages and those kept in the floor pens. The chickens kept in the conventional cages had a significantly higher egg weight and egg quality compared with those kept in the floor pens (P<0.01). The amount of telomeric DNA in lymphocytes was significantly higher in the chickens kept in floor pens than in those kept in conventional cages (P<0.05). The heterophil-lymphocyte ratio, HSP-90β gene expression level, and DNA damage rate significantly increased in chickens kept in the conventional cages, as compared to the chickens kept in floor pens (P<0.01). In conclusion, there seems to be no difference in the production performance between chickens kept in conventional cages and those kept in floor pens. Furthermore, chickens kept in conventional cages had higher stress response values than those kept in floor pens for all stress response indicators. Therefore, conventional cage types are considered to be a more stressful environment for chickens than floor pens, regardless of the production performance of the chickens.