• Title/Summary/Keyword: Legged Robots

Search Result 71, Processing Time 0.017 seconds

Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload (소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향)

  • Chae, Soo-Hwan;Baek, Sang-Min;Lee, Jongeun;Yim, Sojung;Ryu, Jae-Kwan;Jo, Yong-Jin;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.

Optimal Force Distribution for Quadruped Walking Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇을 위한 최적 힘 배분)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.614-620
    • /
    • 2009
  • The force distribution in multi-legged robots is a constrained, optimization problem. The solution to the problem is the set points of the leg contact forces for a particular system task. In this paper, an efficient and general formulation of the force distribution problem is developed using linear programming. The considered walking robot is a quadruped robot with a locked-joint failure, i.e., a joint of the failed leg is locked at a known place. For overcoming the drawback of marginal stability in fault-tolerant gaits, we define safety margin on friction constraints as the objective function to be maximized. Dynamic features of locked-joint failure are represented by equality and inequality constraints of linear programming. Unlike the former study, our result can be applied to various forms of walking such as crab and turning gaits. Simulation results show the validity of the proposed scheme.

Fault-Tolerant Gait Generation of Hexapod Robots for Locked Joint Failures (관절고착고장에 대한 육각 보행 로봇의 내고장성 걸음새 생성)

  • Yang Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.131-140
    • /
    • 2005
  • Fault-tolerant gait generation of a hexapod robot with crab walking is proposed. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. Due to the reduced workspace of a failed leg, fault-tolerant crab walking has a limitation in the range of heading direction. In this paper, an accessible range of the crab angle is derived for a given configuration of the failed leg and, based on the principles of fault-tolerant gait planning, periodic crab gaits are proposed in which a hexapod robot realizes crab walking after a locked joint failure, having a reasonable stride length and stability margin. The proposed crab walking is then applied to path planning on uneven terrain with positive obstacles. i.e., protruded obstacles which legged robots cannot cross over but have to take a roundabout route to avoid. The robot trajectory should be generated such that the crab angle does not exceed the restricted range caused by a locked joint failure.

Posture Control through Decomposed Control for Multi-Legged Biomimetic Underwater Robot (CALEB10) (다족형 생체모방 수중 로봇(CALEB10)의 각 자유도를 분리한 자세 제어)

  • Lee, Hansol;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.63-71
    • /
    • 2018
  • This paper describes a study on posture control of the multi-legged biomimetic underwater robot (CALEB10). Because the underwater environment has a feature that all degrees of freedom are coupled to each other, we designed the posture control algorithm by separating each degree of freedom. Not only should the research on posture control of underwater robots be a precedent study for position control, but it is also necessary to compensate disturbance in each direction. In the research on the yaw directional posture control, we made the drag force generated by the stroke of the left leg and the right leg occur asymmetrically, in order that a rotational moment is generated along the yaw direction. In the composite swimming controller in which the controllers in each direction are combined, we designed the algorithm to determine the control weights in each direction according to the error angle along the yaw direction. The performance of the proposed posture control method is verified by a dynamical simulator and underwater experiments.

A Study on Hybrid Wheeled and Legged Mobile Robot with Docking Mechanism (결합 가능한 복합 바퀴-다리 이동형 로봇에 관한 연구)

  • Lee, Bo-Hoon;Lee, Chang-Seok;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.692-697
    • /
    • 2011
  • There are many researches to develop robots that improve its mobility to adapt in various uneven environments. In the paper, a hybrid mobile robot that can dock with the other robot and transforms between wheeled robot and legged robot is proposed. The hybrid mobile robot platform has docking device with a peg and a cup module. In addition, the robot is possible to walk and drive according to condition of the road. A navigation algorithm of the hybrid mobile robot is proposed to improve the mobility of robots using docking algorithm based on image processing on the broken road and uneven terrain. The proposed method recognizes road condition through PSD sensor attached in front and bottom of the robot and selects an appropriate navigation method according to terrain surface. The proposed docking and navigation methods are verified through experiments using hybrid mobile robots.

Modeling and RPY Motion Analysis of Bipedal Walking Robots (이족 로봇의 보행 모델링 및 롤/피치/요 운동 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.353-358
    • /
    • 2011
  • This paper presents a virtual-legged walking model for bipedal robots and analyzes its fundamental RPY(Roll, Pitch, and Yaw) motion effects by simulation. For the purpose of identifying the motion effects of the bipedal walking, we assign some arbitrary trajectories both at the center of mass and at the center of pressure of the robot based on human walking. And then we verify the major moments to the roll, pitch, and yaw directions of the robot. As a result, it is shown that those motions are natural in the process of bipedal walking and they are deeply dependent on the step distance, the vertical level of the center of mass, and the acceleration of the robot. The importance of trajectory planning for the footstep location during a bipedal walking is finally addressed in terms of balance.

Analysis of dynamic manipulability for four-legged walking robot (4족 보행 로봇의 동적 조작도 해석)

  • 이지홍;전봉환;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2721-2724
    • /
    • 2003
  • This paper deals with a manipulability analysis of multi-legged walking robots in acceleration domain, that is the dynamic manipulability analysis of walking robot. Noting that the kinematic structure of the walking robot is basically the same with that of the multiple serial robot system holding one object, the analysis method for cooperating robot is converted to that of walking robot. With the proposed method, the bound of achievable acceleration of the moving body is easily derived from the given bounds on the capabilities of Joint torques. Several walking robot examples are analyzed with proposed method under the assumption of hard contact, and presented in the paper to validate the method.

  • PDF

Step-Type Obstacle Traversal Algorithm for Six Legged Mobile Robot (견마형 로봇의 계단형 장애물 극복 알고리즘 개발)

  • Shim, Hyung-Won;Lee, Ji-Hong;Kim, Jung-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • Mobile robots traveling on rough terrain need several algorithms to overcome obstacles. In this paper, we propose the step-type obstacle traversal algorithm to adapt the mobile robot with six arms and wheels to travel on rough terrain. Obstacle traversal is composed of two different stages: planning and control. In planning stage, the required joint torque of each arm as well as the interference between the wheels and the arms are analyzed to guarantee traversing obstacles. Control stage includes such steps as checking distance to obstacle, determining the height and length of obstacle, performing arm motion according to sensed torque data, and evaluating safety at every instance. The proposed algorithm is designed and implemented for CALEB 1 six legged robot developed in the laboratory and verified by simulation and experiment in outdoor environment.

  • PDF

Fault Tolerant Straight-Line Gaits of a Quadruped Robot with Feet of Flat Shape (평판 발을 가지는 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2012
  • This paper proposes fault tolerant gaits of a quadruped robot with feet of flat shape. Fault tolerant gaits make it possible for a legged robot to continue static walking against a leg failure. In the previous researches, it was assumed that a legged robot had feet that have point contact with the surface. When the robot is endowed with feet having flat shape, fault tolerant gaits can show better performance compared with the former gaits, especially in terms of the stride length and gait stability. In this paper, fault tolerant gaits of a quadruped robot against a locked joint failure are addressed in straight-line motion and crab walking, respectively.

Post-Failure Walking of Quadruped Robots on a Rough Planar Terrain (비평탄 지형에서 사각 보행 로봇의 고장후 보행)

  • Yang Jung-Min;Park Yong Kuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.547-555
    • /
    • 2005
  • A fault-tolerant gait of multi-legged robots with static walking is a gait which can maintain gait stability and continue its walking against an occurrence of a leg failure. This paper proposes fault-tolerant gait planning of a quadruped robot walking over a rough planar terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. In this Paper, two-phase discontinuous gaits are presented as a new fault-tolerant gait for quadruped robots suffering from a locked joint failure. By comparing with previously developed one-phase discontinuous gaits, it is shown that the proposed gait has great advantages in gait performance such as the stride length and terrain adaptability. Based on the two-phase discontinuous gait, quasi follow-the-leader(FTL) gaits are constructed which enable a quadruped robot to traverse two-dimensional rough terrain after an occurrence of a locked joint failure. During walking, two front legs undergo the foot adjustment procedure for avoiding stepping on forbidden areas. The Proposed wait planning is verified by using computer graphics simulations.