• Title/Summary/Keyword: Leeward

Search Result 109, Processing Time 0.019 seconds

Numerical calculations of aerodynamic performance for ATM train at crosswind conditions

  • Rezvani, Mohammad Ali;Mohebbi, Masoud
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.529-548
    • /
    • 2014
  • This article presents the unsteady aerodynamic performance of crosswind stability obtained numerically for the ATM train. Results of numerical investigations of airflow past a train under different yawing conditions are summarized. Variations of occurrence flow angle from parallel to normal with respect to the direction of forward train motion resulted in the development of different flow patterns. The numerical simulation addresses the ability to resolve the flow field around the train subjected to relatively large yaw angles with three-dimensional Reynolds-averaged Navier-Stokes equations (RANS). ${\kappa}-{\varepsilon}$ turbulence model solved on a multi-block structured grid using a finite volume method. The massively separated flow for the higher yaw angles on the leeward side of the train justifies the use of RANS, where the results show good agreement with verification results. A method of solution is presented that can predict all aerodynamic coefficients and the wind characteristic curve at variety of angles at different speed.

Characteristic Analysys of Songdo Beach, Busan, Shoreline Changes (부산 송도해수욕장의 해안선변화 특성 분석)

  • Kim, Myoung-Kyu;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • In this study, an investigation of the shoreline changes at Song-do beach in Busan was carried out for a coastal improvement project to prevent damage from coastal disasters. From the results of the observed data, it is seen that the shoreline moves seaward under extreme wave conditions and moves leeward under normal wave conditions. The reason for this is wave run-up when wave conditions are extreme in summer. In addition, nourishment sand is moved seaward by wave run-up. Thus, the shoreline's slope is gently decreased. Therefore, the shoreline is moved seaward.

Flow Field Analysis of Smoke in a Rectangular Tunnel

  • Lee, Yong-Ho;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.679-685
    • /
    • 2009
  • In order to simulate a smoke or poisonous gas emergency in a rectangular tunnel and to investigate a better way to exhaust the smoke, the characteristics of smoke flow have been analyzed using flow field data acquired by Particle Image Velocimetry(PIV). Olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}\;m^2/s$. The investigation has done in the range of Reynolds number of 1600 to 5333 due to the inlet velocities of 0.3 m/s to 1 m/s respectively. The average velocity vector and instantaneous kinematic energy fields with respect to the three different Reynolds numbers are comparatively discussed by the Flow Manager. In general, the smoke flow becomes more disorderly and turbulent with the increase of Reynolds number. Kinematic energy in the measured region increases with the increase of Reynolds number while decreasing at the leeward direction about the outlet region.

The Study on Diffraction of Waves About a Breakwater-Gap (방파제에서의 회절파에 관한 연구(제2보))

  • 강관원;송병하
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.70-80
    • /
    • 1976
  • The efficient breakwater design requires a knowledge of the behaviour of the waves passing the breakwater. Wave Diffraction is an important factor and phenomeon in this behaviour. The diffraction ocean waves entering a gap in a breakwater normal to the incident wave direction in water of uniform depth has been investigated, applying a solution previously given in the author's paper, based on the theory of light diffraction by Sommerfeld. The wave profiles and heights on both the leeward side of the breakwater and the gap side have been studied and summarized in the form of diagrams with diffraction coefficients in range of x/L, y/L 0∼100, b/L=0.5∼12, with some extension of the diagrams made previously. The results of the theoretical approaches have not been experimentally verified. The theory ad computation methods with computer program in Fortran IV developed in this study make an efficient use for estimating the diffraction about a breakwater gap.

  • PDF

A Study on the Installation method of the Spacer Damper for Bundled T/L (송전선로 스페이서댐퍼 적정 설치방안 연구)

  • Lee, H.K.;Sohn, H.K.;Lee, D.I.;Wi, H.B.;Park, W.D.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.436-438
    • /
    • 2003
  • Wind-induced oscillations are known to cause damage to the conductors and related hardware through fatigue, clashing of the bundled conductors and bolt loosening. Wake-induced oscillations have been known since the advent of bundled conductors, they are caused by aerodynamically unstable forces acting on the leeward conductors in the wake of the windward conductors, They take the form of horizontal galloping, snaking or rolling, in which case all subconductors move together in unison. They can also take the form of the subspan oscillation, which appear as elliptical motions of the subconductors moving out of phase, mainly in the horizontal plane within a subspan. In order to decrease amplitudes of the oscillation, this paper examines the application status of the spacer dampers and suggests proper installation methods.

  • PDF

Computer Simulation of a Train Exiting a Tunnel through a Varying Crosswind

  • Krajnovic, S.
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.99-105
    • /
    • 2008
  • Flow around an ICE2 high-speed train exiting a tunnel under the influence of a wind gust has been studied using numerical technique called detached eddy simulation. A wind gust boundary condition was derived to approximate previous experimental observations. The body of the train includes most important details including bogies, plugs, inter-car gaps and rotating wheels on the rail. The maximal yawing and rolling moments which possibly can cause a derailment or overturning were found to occur when approximately one third and one half of the train, respectively, has left the tunnel. These are explained by development of a strong vortex trailing along the upper leeward edge of the train. All aerodynamic forces and moments were monitored during the simulation and the underlying flow structures and mechanisms are explained.

  • PDF

The Effect of Layout Type of the Housing on Wind Flow Planning for Healthy Environment in Multi-Family Housing (집합주거단지에서 건강환경 조성을 위한 주거동의 배치유형이 통풍계획에 미치는 영향 분석)

  • Cho, Cheul-Hee;Lee, Teuk-Koo
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.10 no.2
    • /
    • pp.71-82
    • /
    • 2004
  • The purpose of this study is to analyze the wind velocity ratio in respect of layout types of housing in multi-family housing. The wind velocity ratio is a difference of wind velocity between on the leeward and on the windward side of multi-family housing. The layout types of housing are grid layout pattern of linear type, mixture pattern of Linear type + tower type and layout pattern of tower type. The planning of wind flow is an induced technique to increase in wind velocity in the city and multi-family housing. This study investigates wind velocity ratio into layout types of housing. consequently, analysis were basic design data for the planning techique of wind flow suggested.

  • PDF

Evaluating the Mechanical Properties of Fiber Yarns for Developing Synthetic Fiber Chains

  • Kim, Kyeongsoo;Kim, Taewan;Kim, Namhun;Kim, Dokyoun;Kang, Yongjun;Kim, Seonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • In this study, three types of synthetic fiber materials were evaluated, namely, DM20, SK78, and T147, to replace steel chains in shipbuilding and offshore fields with fiber chains as there is increasing demand for chains with lighter weights and improved usabilities. The strength and quasi-static stiffness were analyzed to select suitable yarns for the fiber chains. The durability of the yarn was evaluated by performing a 3-T (time to rupture) test as a specific tension level. The results of the experiment revealed excellent dynamic stiffness in DM20 and highest values of the windward and leeward stiffness in T147. 3-T linear design characteristic curves for a specific tension level were derived for the three types of fiber materials. The findings of this study can provide insights for improving strength and durability in fiber chain design.

Characteristics of Meteorological Variables in the Leeward Side associated with the Downslope Windstorm over the Yeongdong Region (영동지역 지형성 강풍과 관련된 풍하측 기상요소의 특징)

  • Cho, Young-Jun;Kwon, Tae-Yong;Choi, Byoung-Cheol
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.315-329
    • /
    • 2015
  • We investigated the characteristics of meteorological conditions related to the strong downslope wind over the leeward side of the Taebaek Mountains during the period 2005~2010. The days showing the strong wind exceeding $14ms^{-1}$ in Gangwon province were selected as study cases. A total of 15 days of strong wind were observed at Sokcho, Gangneung, Donghae, and Taebaek located over the Yeongdong region. Seven cases related to tropical cyclone (3 cases) and heavy snowfall (2 cases) and heavy rainfall (2 cases) over the Yeongdong region were excluded. To investigate the characteristics of the remaining 8 cases, we used synoptic weather chart, Sokcho radiosonde, Gangneung wind profiler and numerical model. The cases showed no precipitation (or ${\leq}1mm\;day^{-1}$). From the surface and upper level weather chart, we found the pressure distribution of southern high and northern low pattern over the Korean peninsula and warm ridge over the Yeongdong region. Inversion layer (or stable layer) and warm ridge with strong wind were located in about 1~3 km (925~700 hPa) over mountains. The Regional Data Assimilation and Prediction System (RDAPS) indicated that warm core and temperature ridge with horizontal temperature gradient were $0.10{\sim}0.23^{\circ}C\;km^{-1}$ which were located on 850 hPa pressure level above mountaintop. These results were summarized as a forecasting guidance of downslope windstorm in the Yeongdong region.

Analysis for Aerodynamic Resistance of Chrysanthemum Canopy through Wind Tunnel Test (풍동실험을 통한 국화군락의 공기유동 저항 분석)

  • Yu, In-Ho;Yun, Nam-Kyu;Cho, Myeong-Whan;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • A wind tunnel test was conducted at Protected Horticulture Experiment Station of National Horticultural Research Institute in Busan to find the aerodynamic resistance and quadratic resistance coefficient of chrysanthemum in greenhouse. The internal plants of the CFD model has been designed as a porous media because of the complexity of its physical shapes. Then the aerodynamic resistance value should be input for analyzing CFD model that crop is considered while the value varies by crops. In this study, the aerodynamic resistance value of chrysanthemum canopy was preliminarily found through wind tunnel test. The static pressure at windward increased as wind velocity and planting density increased. The static pressure at leeward decreased as wind velocity increased but was not significantly affected by planting density. The difference of static pressure between windward and leeward increased as wind velocity and planting density increased. The aerodynamic resistance value of chrysanthemum canopy was found to be 0.22 which will be used later as the input data of Fluent CFD model. When the planting distances were $9{\times}9\;cm$, $11{\times}11\;cm$, and $13{\times}13\;cm$, the quadratic resistance coefficients of porous media were found to be 2.22, 1.81, and 1.07, respectively. These values will be used later as the input data of CFX CFD model.