• Title/Summary/Keyword: Least squares estimator

Search Result 160, Processing Time 0.019 seconds

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

Biased-Recovering Algorithm to Solve a Highly Correlated Data System (상관관계가 강한 독립변수들을 포함한 데이터 시스템 분석을 위한 편차 - 복구 알고리듬)

  • 이미영
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.3
    • /
    • pp.61-66
    • /
    • 2003
  • In many multiple regression analyses, the “multi-collinearity” problem arises since some independent variables are highly correlated with each other. Practically, the Ridge regression method is often adopted to deal with the problems resulting from multi-collinearity. We propose a better alternative method using iteration to obtain an exact least squares estimator. We prove the solvability of the proposed algorithm mathematically and then compare our method with the traditional one.

GLOBAL MINIMA OF LEAST SQUARES CROSS VALIDATION FOR A SYMMETRIC POLYNOMIAL KEREL WITH FINITE SUPPORT

  • Jung, Kang-Mo;Kim, Byung-Chun
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.183-192
    • /
    • 1996
  • The least squares cross validated bandwidth is the mini-mizer of the corss validation function for choosing the smooth parame-ter of a kernel density estimator. It is a completely automatic method but it requires inordinate amounts of computational time. We present a convenient formula for calculation of the cross validation function when the kernel function is a symmetric polynomial with finite sup-port. Also we suggest an algorithm for finding global minima of the crass validation function.

Estimation for Autoregressive Models with GARCH(1,1) Error via Optimal Estimating Functions.

  • Kim, Sah-Myeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.207-214
    • /
    • 1999
  • Optimal estimating functions for a class of autoregressive models with GARCH(1,1) error are discussed. The asymptotic properties of the estimator as the solution of the optimal estimating equation are investigated for the models. We have also some simulation results which suggest that the proposed optimal estimators have smaller sample variances than those of the Conditional least-squares estimators under the heavy-tailed error distributions.

  • PDF

Diagnostic Study of Problems under Asymptotically Generalized Least Squares Estimation of Physical Health Model

  • Kim, Jung-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.5
    • /
    • pp.1030-1041
    • /
    • 1999
  • This study examined those problems noticed under the Asymptotically Generalized Least Squares estimator in evaluating a structural model of physical health. The problems were highly correlated parameter estimates and high standard errors of some parameter estimates. Separate analyses of the endogenous part of the model and of the metric of a latent factor revealed a highly skewed and kurtotic measurement indicator as the focal point of the manifested problems. Since the sample sizes are far below that needed to produce adequate AGLS estimates in the given modeling conditions, the adequacy of the Maximum Likelihood estimator is further examined with the robust statistics and the bootstrap method. These methods demonstrated that the ML methods were unbiased and statistical decisions based upon the ML standard errors remained almost the same. Suggestions are made for future studies adopting structural equation modeling technique in terms of selecting of a reference indicator and adopting those statistics corrected for nonormality.

  • PDF

A Hybrid Algorithm for Identifying Multiple Outlers in Linear Regression

  • Kim, Bu-yong;Kim, Hee-young
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.291-304
    • /
    • 2002
  • This article is concerned with an effective algorithm for the identification of multiple outliers in linear regression. It proposes a hybrid algorithm which employs the least median of squares estimator, instead of the least squares estimator, to construct an Initial clean subset in the stepwise forward search scheme. The performance of the proposed algorithm is evaluated and compared with the existing competitor via an extensive Monte Carlo simulation. The algorithm appears to be superior to the competitor for the most of scenarios explored in the simulation study. Particularly it copes with the masking problem quite well. In addition, the orthogonal decomposition and Its updating techniques are considered to improve the computational efficiency and numerical stability of the algorithm.

A New Estimator for Seasonal Autoregressive Process

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • For estimating parameters of possibly nonlinear and/or non-stationary seasonal autoregressive(AR) processes, we introduce a new instrumental variable method which use the direction vector of the regressors in the same period as an instrument. On the basis of the new estimator, we propose new seasonal random walk tests whose limiting null distributions are standard normal regardless of the period of seasonality and types of mean adjustments. Monte-Carlo simulation shows that he powers of he proposed tests are better than those of the tests based on ordinary least squares estimator(OLSE).

  • PDF

A Wald Test for a Unit Root Based on the Symmetric Estimator

  • Jong Hyup Lee;Dong Wan SHin
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.677-683
    • /
    • 1997
  • For an AR(1) model with intercept $y_t=\mu+\rho{y_{t-1}}+e_t$, a test for random walk hypothesis $H_0:(\mu, \rho)=(0, 1)$is proposed, which is based on the symmetric estimator. In the vicinity of the null, the test in shown to be more powerful than the test of Dickey and Fuller(1981) based on the ordinary least squares estimator.

  • PDF

Robustness of Minimum Disparity Estimators in Linear Regression Models

  • Pak, Ro-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.349-360
    • /
    • 1995
  • This paper deals with the robustness properties of the minimum disparity estimation in linear regression models. The estimators defined as statistical quantities whcih minimize the blended weight Hellinger distance between a weighted kernel density estimator of the residuals and a smoothed model density of the residuals. It is shown that if the weights of the density estimator are appropriately chosen, the estimates of the regression parameters are robust.

  • PDF

Estimation of Ridge Regression Under the Integrate Mean Square Error Cirterion

  • Yong B. Lim;Park, Chi H.;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.1
    • /
    • pp.61-77
    • /
    • 1980
  • In response surface experiments, a polynomial model is often used to fit the response surface by the method of least squares. However, if the vectors of predictor variables are multicollinear, least squares estimates of the regression parameters have a high probability of being unsatisfactory. Hoerland Kennard have demonstrated that these undesirable effects of multicollinearity can be reduced by using "ridge" estimates in place of the least squares estimates. Ridge regrssion theory in literature has been mainly concerned with selection of k for the first order polynomial regression model and the precision of $\hat{\beta}(k)$, the ridge estimator of regression parameters. The problem considered in this paper is that of selecting k of ridge regression for a given polynomial regression model with an arbitrary order. A criterion is proposed for selection of k in the context of integrated mean square error of fitted responses, and illustrated with an example. Also, a type of admissibility condition is established and proved for the propose criterion.criterion.

  • PDF