• Title/Summary/Keyword: Least mean square

Search Result 690, Processing Time 0.032 seconds

The Bi-directional Least Mean Square Algorithm and Its Application to Echo Cancellation (양방향 최소 평균 제곱 알고리듬과 반향 제거로의 응용)

  • Kwon, Oh-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1337-1344
    • /
    • 2014
  • The objective of an echo canceller connected to any end of a communication line such as digital subscriber line (DSL) is to compensate the outgoing transmit signal in the receiving path that the hybrid circuit leaks. The echo canceller working in a full duplex environment is an adaptive system driven by the local signal. Conventional echo canceller that implement the least mean square (LMS) algorithm provides a low computational burden but poor convergence properties. The length of the echo canceller will directly affect both the degree of performance and the convergence speed of the adaptation process. To cancel long time-varying echoes, the number of tap coefficients of a conventional echo canceller must be large, which decreases the convergence speed of the adaptive filter. This paper proposes an alternative technique for the echo cancellation in a telecommunication channel. The new technique employs the bi-directional least mean square (LMS) algorithm for adaptively computing the optimal set of the coefficients of the echo canceller, which is composed of weighted combination of both feedforward and feedback algorithms. Finally, Simulation results as well as mathematical analysis demonstrates that the proposed echo canceller has faster convergence speed than the conventional LMS echo canceller with nearly equivalent complexity of computation.

Transform Domain Adaptive Filtering with a Chirp Discrete Cosine Transform LMS (CDCTLMS를 이용한 변환평면 적응 필터링)

  • Jeon, Chang-Ik;Yeo, Song-Phil;Chun, Kwang-Seok;Lee, Jin;Kim, Sung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.54-62
    • /
    • 2000
  • Adaptive filtering method is one of signal processing area which is frequently used in the case of statistical characteristic change in time-varing situation. The performance of adaptive filter is usually evaluated with complexity of its structure, convergence speed and misadjustment. The structure of adaptive filter must be simple and its speed of adaptation must be fast for real-time implementation. In this paper, we propose chirp discrete cosine transform (CDCT), which has the characteristics of CZT (chrip z-transform) and DCT (discrete cosine transform), and then CDCTLMS (chirp discrete cosine transform LMS) using the above mentioned algorithm for the improvement of its speed of adaptation. Using loaming curve, we prove that the proposed method is superior to the conventional US (normalized LMS) algorithm and DCTLMS (discrete cosine transform LMS) algorithm. Also, we show the real application for the ultrasonic signal processing.

  • PDF

Comparison of Adaptive Algorithms for Active Noise Control (능동 소음 제어를 위한 적응 알고리즘들 비교)

  • Lee, Keun-Sang;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • In this paper, we confirm the effective adaptive algorithm for tha active noise contorl (ANC) though the performance comparison between adaptive algorithms. Generally, the normalized least mean square (NLMS) algorithm has been widely used for an adaptive algorithm thanks to its simplicity and having a fast convergence speed. However, the convergence performance of the NLMS algorithms is often deteriorated by colored input signals. To overcome this problem, the affine pojection (AP) algorithm that updates the weight vector based on a number of recent input vectors can be used for allowing a higher convergence speed than the NLMS algorithm, but it is computationally complex. Thus, the proper algorithm were determined by the comparison between NLMS and AP algorithms regarding as the convergence performance and complexity. Simulation results confirmed that the noise reduction performance of NLMS algorithm was comparable to AP algorithm with low complexity. Therefore the NLMS algorithm is more effective for ANC system.

A single sensor based active reflection control system using FxLMS algorithm (FxLMS를 이용한 단일 센서기반 능동 반향음 제어 시스템)

  • Kim, Jaepil;Ji, Youna;Park, Young cheol;Seo, Young soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • This paper presents an active acoustic-reflection control algorithm based on a single sensor. The proposed algorithm operates in a system comprising a single sensor located nearby the reflective surface and a control transducer mounted on the reflective surface. First, the incident and reflected acoustic signals are separated from the sensor signal, and a control signal is generated using the separated signals. For the signal separation, the proposed algorithm requires the response of the reflection path which is estimated from the acoustic response between an external sound source and the sensor. Finally, the control filter is adjusted using the FxLMS (Filtered-x Least Mean Square) algorithm. To verify the effectiveness of the proposed algorithm, it was implemented in real time using a DSP (Digital Signal Processing) board, and the experimental results obtained in one-dimensional air-acoustic environment show that the reflections of the 1 kHz burst can be reduced by 11.6 dB.

Iterative Phase estimation based on Turbo code (터보부호를 이용한 반복 위상 추정기법)

  • Ryu, Joong-Gon;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we propose carrier phase synchronization algorithm which are base on turbo coded system for DVB-RCS. There have been two categories of phase estimator, single estimator outside turbo code decoder and multiple estimators inside turbo code decoder. In single estimator, we use the estimation algorithm that ML(Maximum Likelihood) and LMS(Least Mean Square), also three different soft decision methods are proposed. Multiple estimator apply PSP(Per Survivor Processing) algorithm additionally. We compared performance between single estimator and Multiple estimator in AWGN channel. We presented the two methods of PSP algorithm for performance elevation. First is the Bi-directional channel estimation and second is binding method.

The efficient implementation of the multi-channel active noise controller using a low-cost microcontroller unit (저가 microcontoller unit을 이용한 효율적인 다채널 능동 소음 제어기 구현)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.9-22
    • /
    • 2019
  • In this paper, we propose a method that can be applied to the efficient implementation of multi-channel active noise controller. Since the normalized MFxLMS (Modified Filtered-x Least Mean Square) algorithm for the multi-channel active noise control requires a large amount of computation, the difficulty has lied in implementing the algorithm using a low-cost MCU (Microcontoller Unit). We implement the multi-channel active noise controller efficiently by optimizing the software based on the features of the MCU. By maximizing the usage of single-cycle MAC (Multiply- Accumulate) operations and minimizing move operations of the delay memory, we can achieve more than 3 times the performance in the aspect of computational optimization, and by parellel processing using the auxillary processor included in the MCU, we can also obtain more than 4 times the performance. In addition, the usage of additional parts can be minimized by maximizing the usage of the peripherals embedded in the MCU.

Applying Least Mean Square Method to Improve Performance of PV MPPT Algorithm

  • Poudel, Prasis;Bae, Sang-Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.15 no.3
    • /
    • pp.99-110
    • /
    • 2022
  • Solar photovoltaic (PV) system shows a non-linear current (I) -voltage (V) characteristics, which depends on the surrounding environment factors, such as irradiance, temperature, and the wind. Solar PV system, with current (I) - voltage (V) and power (P) - Voltage (V) characteristics, specifies a unique operating point at where the possible maximum power point (MPP) is delivered. At the MPP, the PV array operates at maximum power efficiency. In order to continuously harvest maximum power at any point of time from solar PV modules, a good MPPT algorithms need to be employed. Currently, due to its simplicity and easy implementation, Perturb and Observe (P&O) algorithms are the most commonly used MPPT control method in the PV systems but it has a drawback at suddenly varying environment situations, due to constant step size. In this paper, to overcome the difficulties of the fast changing environment and suddenly changing the power of PV array due to constant step size in the P&O algorithm, least mean Square (LMS) methods is proposed together with P&O MPPT algorithm which is superior to traditional P&O MPPT. PV output power is predicted using LMS method to improve the tracking speed and deduce the possibility of misjudgment of increasing and decreasing the PV output. Simulation results shows that the proposed MPPT technique can track the MPP accurately as well as its dynamic response is very fast in response to the change of environmental parameters in comparison with the conventional P&O MPPT algorithm, and improves system performance.

New variable adaptive coefficient algorithm for variable circumstances (가변환경에 적합한 새로운 가변 적응 계수에 관한 연구)

  • 오신범;이채욱
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 1999
  • One of the most popular algorithm in adaptive signal processing is the least mean square(LMS) algorithm. The majority of these papers examine the LMS algorithm with a constant step size. The choice of the step size reflects a tradeoff between misadjustment and the speed of adaptation. Subsequent works have discussed the issue of optimization of the step size or methods of varying the step size to improve performance. However there is as yet no detailed analysis of a variable step size algorithm that is capable of giving both the speed of adaptation and convergence. In this paper we propose a new variable step size algorithm where the step size adjustment is controlled by square of the prediction error. The simulation results obtained using the new algorithm about noise canceller system and system identification are described. They are compared to the results obtained for other variable step size algorithm. function.

  • PDF

Performance Analysis of Turbo Equalizer in the Multipath Channel (다중 채널 환경에서 터보 등화기 성능 분석)

  • Jung, Ji Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.169-173
    • /
    • 2012
  • This paper investigates the performance of Turbo equalization in wireless multipath channels. Turbo equalization mainly consists of a SISO(soft-in soft-out) equalizer and a SISO decoder. Iterative channel estimators can improve the accuracy of channel estimates by soft information fed back from the SISO decoder. Comparing iterative channel estimators with LMS(least mean square) and RLS(recursive least squares) algorithms, which are the most common algorithms to estimate and track a time-varying channel impulse response, the iterative channel estimator with RLS converges more faster than the one with LMS. However, the difference of BER(bit error rate) performances gradually decreases as the number of iterations for Turbo equalization increases.

A Regularized Mixed Norm Multi-Channel Image Restoration Algorithm (정규화 혼합 Norm을 이용한 다중 채널 영상 복원 방식)

  • 홍민철;신요안;이원철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.272-282
    • /
    • 2004
  • This paper introduces a regularized mixed norm multi-channel image restoration algorithm using both within-and between- channel deterministic information. For each channel a functional which combines the least mean squares (LMS), the least mean fourth (LMF), and a smoothing functional is proposed. We introduce a mixed norm parameter that controls the relative contribution between the LMS and the LMF, and a regularization parameter defining the degree of smoothness of the solution, where both parameters are updated at each iteration according to the noise characteristics of each channel. The novelty of the proposed algorithm is that no knowledge of the noise distribution for each channel is required and that the parameters mentioned above are adjusted based on the partially restored image.