• 제목/요약/키워드: Least Squares Circle Fitting

검색결과 10건 처리시간 0.033초

GEOMETRIC FITTING OF CIRCLES

  • Kim, Ik-Sung
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.983-994
    • /
    • 2000
  • We consider the problem of determining the circle of best fit to a set of data points in the plane. In [1] and [2] several algorithms already have been given for fitting a circle in least squares sense of minimizing the geometric distances to the given data points. In this paper we present another new descent algorithm which computes a parametric represented circle in order to minimize the sum of the squares of the distances to the given points. For any choice of starting values our algorithm has the advantage of ensuring convergence to a local minimum. Numerical examples are given.

Least Square를 이용한 수직다관절 Manipulator의 새로운 원호 경로 보간 방법 (A New Circular Curve Fitting of Articulated Manipulators Using Least Squares)

  • 정원지;이춘만;김대영;서영교;홍형표
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.17-22
    • /
    • 2003
  • This paper presents a new circular curve fitting approach of articulated manipulators, based on least square. The approach aims at gaining the interpolation of circle from n data points, under the condition that the fitted circle should pass both a starting point and an ending point. First a spherical fitting should be performed, using least squares. Then the circular curve fitting can be resulted from the intersection of the fitted sphere and the plane obtained from 3 points, i. e., a starting point, an ending point and the center of a sphere. The proposed algorithms are shown to be efficient by using MATLAB-based simulation.

최소자승법을 이용한 수직다관절 Manipulator의 원호보간에 관한 효과적인 방법 (An Efficient Approach to Circular Curve Fitting of Articulated Manipulators Using Least Squares)

  • 김대영;최은재;정원지;서영교;홍형표
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.570-575
    • /
    • 2002
  • This paper presents a new circular curve fitting approach of articulated manipulators, based on pseudoinverses. The paper aims at gaining the interpolation of circle from n data points, under the condition that the fitted circle should pass both a start point and an end point. In this paper, two algorithms of circular interpolation are presented. Prior to circular interpolation, are a spherical fitting should be performed, using least squares. In the first algorithm, the relationship between point data and normal vector on the sphere is used. In the second algorithm. the equation of plane which can be obtained from 3 points, i.e., a start point, an end point, and center of a sphere. The proposed algorithms are show to be efficient by using MATLAB-based simulation.

  • PDF

고차 다항식 변환 기반 카메라 캘리브레이션을 이용한 웨이퍼 Pre-Alignment 시스템 (A Wafer Pre-Alignment System Using a High-Order Polynomial Transformation Based Camera Calibration)

  • 이남희;조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.11-16
    • /
    • 2010
  • Wafer Pre-Alignment is to find the center and the orientation of a wafer and to move the wafer to the desired position and orientation. In this paper, an area camera based pre-aligning method is presented that captures 8 wafer images regularly during 360 degrees rotation. From the images, wafer edge positions are extracted and used to estimate the wafer's center and orientation using least squares circle fitting. These data are utilized for the proper alignment of the wafer. For accurate alignments, camera calibration methods using high order polynomials are used for converting pixel coordinates into real-world coordinates. A complete pre-alignment system was constructed using mechanical and optical components and tested. Experimental results show that alignment of wafer center and orientation can be done with the standard deviation of 0.002 mm and 0.028 degree, respectively.

디지털 영상에서 부화소 정밀도의 실제 경계 추정 (Estimation of Real Boundary with Subpixel Accuracy in Digital Imagery)

  • 김태현;문영식;한창수
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.16-22
    • /
    • 1999
  • In this paper, an efficient algorithm for estimating real edge locations to subpixel values is described. Digital images are acquired by projection into image plane and sampling process. However, most of real edge locations are lost in this process, which causes low measurement accuracy. For accurate measurement, we propose an algorithm which estimates the real boundary between two adjacent pixels in digital imagery, with subpixel accuracy. We first define 1D edge operator based on the moment invariant. To extend it to 2D data, the edge orientation of each pixel is estimated by the LSE(Least Squares Error)line/circle fitting of a set of pixels around edge boundary. Then, using the pixels along the line perpendicular to the estimated edge orientation the real boundary is calculated with subpixel accuracy. Experimental results using real images show that the proposed method is robust in local noise, while maintaining low measurement error.

  • PDF

가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환 (TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames)

  • 배태석;홍창기;임수현
    • 한국측량학회지
    • /
    • 제40권4호
    • /
    • pp.315-324
    • /
    • 2022
  • 일반적인 조정계산에서는 독립변수의 오차는 없다고 가정하고 종속변수의 오차만을 고려하는 최소제곱해를 구한다. 그러나 지상측량에 의해 결정한 3차원 공간좌표나 GNSS (Global Navigation Satellite System) 기반 추정좌표는 성분별로 독립적으로 결정되지 않으므로 모든 성분에 오차가 있을 뿐만 아니라 공분산도 존재한다. 따라서 좌표쌍을 이용한 평면 추정이나 좌표계 변환에서는 모든 성분의 오차를 고려하는 전최소제곱을 적용해야 한다. 이를 위한 다양한 모델이 존재하며, 특별한 제약조건을 제외하면 동등한 해를 제공한다. 본 연구에서는 가우스-헬머트 모델(GHM: Gauss-Helmert Model) 기반 전최소제곱으로 VLBI 타겟이 형성하는 자취를 이용하여 평면의 법선벡터를 추정했으며, 지역좌표계를 세계측지계로 변환하는 계수 결정에도 적용했다. 평면방정식의 경우 기존 최소제곱 방법과 비교해서 법선벡터는 동일하지만 분산요소의 안정성과 타겟 위치에 따른 분산요소 특성을 명확히 확인할 수 있었다. 좌표계 변환계수는 가우스-헬머트 모델을 적용하면 변환 전후 두 좌표계에서 모두 잔차를 계산할 수 있으며, 기존 방식보다 잔차가 더 작아진다.

Torusity Tolerance Verification using Swarm Intelligence

  • Prakasvudhisarn, Chakguy;Kunnapapdeelert, Siwaporn
    • Industrial Engineering and Management Systems
    • /
    • 제6권2호
    • /
    • pp.94-105
    • /
    • 2007
  • Measurement technology plays an important role in discrete manufacturing industry. Probe-type coordinate measuring machines (CMMs) are normally used to capture the geometry of part features. The measured points are then fit to verify a specified geometry by using the least squares method (LSQ). However, it occasionally overestimates the tolerance zone, which leads to the rejection of some good parts. To overcome this drawback, minimum zone approaches defined by the ANSI Y14.5M-1994 standard have been extensively pursued for zone fitting in coordinate form literature for such basic features as plane, circle, cylinder and sphere. Meanwhile, complex features such as torus have been left to be dealt-with by the use of profile tolerance definition. This may be impractical when accuracy of the whole profile is desired. Hence, the true deviation model of torus is developed and then formulated as a minimax problem. Next, a relatively new and simple population based evolutionary approach, particle swarm optimization (PSO), is applied by imitating the social behavior of animals to find the minimum tolerance zone torusity. Simulated data with specified torusity zones are used to validate the deviation model. The torusity results are in close agreement with the actual torusity zones and also confirm the effectiveness of the proposed PSO when compared to those of the LSQ.

최적 근사 직교평면을 이용한 폴리곤 모델의 필렛 반지름 측정 (Radius Measurement of Fillet Regions of Polygonal Models by using Optimum Orthogonal Planes)

  • 한영현
    • 한국CDE학회논문집
    • /
    • 제10권2호
    • /
    • pp.114-120
    • /
    • 2005
  • This paper presents a novel method for radius measurement of fillet regions of polygonal models by using optimum onhogonal planes. The objective function for finding an optimum onhogonal plane is designed based on the orthogonality between the normal vectors of the faces in a filet region and the plane that is to be found. Direct search methods are employed to solve the defined optimization problem since no explicit derivatives of the object function can be calculated. Once an optimum orthogonal plane is obtained, the intersection between the onhogonal plane and the faces of interest is calculated, and necessary point data in the fillet region for measuring radii are extracted by some manipulation. Then, the radius of the fillet region in question is measured by least squares fitting of a circle to the extracted point data. The proposed radius measuring method could eliminate the burden of defining a plane for radius measurement, and automatically find a necessary optimum orthogonal plane. It has an advantage in that it can measure fillet radii without prior complicated segmentation of fillet regions and explicit information of neighboring surfaces. The proposed method is demonstrated trough some mea-surement examples.

항공라이다 데이터의 건물 곡선경계 추출 및 모델링 (Extraction and Modeling of Curved Building Boundaries from Airborne Lidar Data)

  • 이정호;김용일
    • 대한공간정보학회지
    • /
    • 제20권4호
    • /
    • pp.117-125
    • /
    • 2012
  • 항공라이다 데이터를 이용한 건물 추출 연구가 많이 진행되어 오고 있으나 대부분의 연구는 건물경계를 직선으로 가정하기 때문에 곡선경계가 포함된 건물의 경계를 올바르게 모델링하지 못하는 한계가 있다. 본 논문은 곡선경계를 포함하는 건물을 항공라이다 데이터로부터 직선과 곡선이 혼합된 경계로 모델링하는 것을 목적으로 한다. 건물점들에 대하여 적응적 컨벡스헐 알고리즘과 큰 반경의 국지적 컨벡스헐 알고리즘을 적용하여 두 세트의 경계점을 추출한다. 경계점들의 평균 점 간격 및 수직이등분선의 교차 비율에 의하여 곡선 세그먼트를 판별한 후, 직선과 곡선 세그먼트에 대하여 각각 다른 정규화 방법을 적용하여 건물경계를 모델링한다. 실험결과, 곡선 세그먼트의 추출 완전성과 정확성이 각각 69%, 100%로서 본 연구의 방법을 통해 대부분의 곡선경계를 올바르게 추출 및 모델링 할 수 있었다. 본 연구의 결과는 수치지도 제작기준을 만족하는 건물경계를 자동으로 생성하는데 효과적으로 활용될 수 있을 것이다.

교합면의 해부학적 형태와 교합만곡의 연관성에 대한 연구 (Association between mandibular occlusal morphology and occlusal curvature)

  • 남신은;이희경
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.217-224
    • /
    • 2016
  • Purpose: This study aimed to generate 3-D occlusal curvatures and evaluate the relationship between the occlusal curvatures and mandibular occlusal morphology factors. Methods: Mandibular dental casts from 25 young adult Korean were scanned as a virtual dental models with a 3-D scanner(Scanner S600, Zirkonzahn, Italy). The curve of Spee, curve of Wilson, and Monson's sphere were generated by fitting a circle/sphere to the cusp tips using a least-squares method. The mandibular mesiodistal cusp inclination, buccolingual cusp inclination, and tooth wear parameters were measured on the prepared virtual models using RapidForm2004(INUS technology INC, Seoul, Korea). Wilcoxon signed-rank test was performed to test side difference, and Spearman's rank correlation coefficients were investigated to verify the correlation between occlusal curvatures and correlated factors (a=0.05). Results: The mean radii of curve of Spee were $83.09{\pm}33.94$ in the left side and $79.00{\pm}28.12mm$ in the right side. The mean radii of curve of Wilson were $66.82{\pm}15.87mm$ in the mesial side and $47.87{\pm}9.40mm$ in the distal side with significantly difference between mesiodistal sides(p<0.001). The mean radius of Monson's sphere was $121.85{\pm}47.11mm$. Most of the cusp inclination parameters showed negative correlation for the radius of Monson' sphere(p<0.05). Especially, the buccolingual cusp inclinations in mesial side of molar showed high correlation coefficients among the factors(p<0.05). Conclusion: The radius of Monson's sphere was greater than the classical 4-inch values, and the buccolingual cusp inclinations in mesial side of molar can be considered as one of the main factors correlating with the radius of Monson's sphere.