• Title/Summary/Keyword: Least Mean Square Error

Search Result 323, Processing Time 0.026 seconds

Adaptive Feedback Interference Cancellation Algorithm Using Correlations for Adaptive Interference Cancellation System (적응 간섭 제거 시스템을 위한 상관도를 적용한 적응적 궤환 간섭 제거 알고리즘)

  • Han, Yong-Sik;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.427-432
    • /
    • 2010
  • To reduce the outage probability and to increase the transmission capacity, the importance of repeaters in cellular systems is increasing. But a RF(Radio Frequency) repeater has a problem that the output of the transmit antenna is partially feedback to the receive antenna, which is feedback interference. In this paper, we proposed adaptive Sign-Sign LMS(Least Mean Square) algorithm using correlations for the performance enhancement of RF repeater. The weight vector is updated by using sign of input signal and error signal to the least squared error of the conventional algorithms. When compared with the conventional method, the proposed canceller achieves the maximum 10 dB performance gain in terms of the MSE(Mean Square Error).

Design-based Properties of Least Square Estimators in Panel Regression Model (패널회귀모형에서 회귀계수 추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Survey Research
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 2011
  • In this paper we investigate design-based properties of both the ordinary least square estimator and the weighted least square estimator for regression coefficients in panel regression model. We derive formulas of approximate bias, variance and mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator after linearization of least square estimators. Also we compare their magnitudes each other numerically through a simulation study. We consider a three years data of Korean Welfare Panel Study as a finite population and take household income as a dependent variable and choose 7 exploratory variables related household as independent variables in panel regression model. Then we calculate approximate bias, variance, mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator based on several sample sizes from 50 to 1,000 by 50. Through the simulation study we found some tendencies as follows. First, the mean square error of the ordinary least square estimator is getting larger than the variance of the weighted least square estimator as sample sizes increase. Next, the magnitude of mean square error of the ordinary least square estimator is depending on the magnitude of the bias of the estimator, which is large when the bias is large. Finally, with regard to approximate variance, variances of the ordinary least square estimator are smaller than those of the weighted least square estimator in many cases in the simulation.

  • PDF

Approximate Variance of Least Square Estimators for Regression Coefficient under Inclusion Probability Proportional to Size Sampling (포함확률비례추출에서 회귀계수 최소제곱추정량의 근사분산)

  • Kim, Kyu-Seong
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • This paper deals with the bias and variance of regression coefficient estimators in a finite population. We derive approximate formulas for the bias, variance and mean square error of two estimators when we select a fixed-size inclusion probability proportional to the size sample and then estimate regression coefficients by the ordinary least square estimator as well as the weighted least square estimator based on the selected sample data. Necessary and sufficient conditions for the comparison of the two estimators in terms of variance and mean square error are suggested. In addition, a simple example is introduced to numerically compare the variance and mean square error of the two estimators.

A Study on Adaptive Interference Canceller of Wireless Repeater for Wideband Code Division Multiple Access System (WCDMA시스템 무선 중계기의 적응간섭제거기에 관한 연구)

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1321-1327
    • /
    • 2009
  • In this paper, as the mobile communication service is widely used and the demand for wireless repeaters is rapidly increasing because of the easiness of extending service areas. But a wireless repeater has a problem the oscillation due to feedback signal. We proposed a new hybrid interference canceller using the adaptive filter with CMA(Constant Modulus Algorithm)-Grouped LMS(Least Mean Square) algorithm in the adaptive interference canceller. The proposed interference canceller has better channel adaptive performance and a lower MSE(Mean Square Error) than conventional structure because it uses the cancellation method of Grouped LMS algorithm. The proposed detector uses the LMS algorithms with two different step size to reduce mean square error and to obtain fast convergence. This structure reduces the number of iterations for the same MSE performance and hardware complexity compared to conventional nonlinear interference canceller.

A Study on DCT Hierarchical LMS DFE Algorithm to Improve the Performance of ATSC Digital TV Broadcasting (ATSC 디지털 TV 방송수신 성능개선을 위한 DCT 계층적 LMS DFE 알고리즘 연구)

  • 김재욱;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.529-536
    • /
    • 2003
  • In this Paper, a new DCT HLMS DFE(Discrete Cosine Transform Hierarchical Least Mean Square Decision Feedback Equalizer) algorithm is proposed to improve the convergence speed and MSE(Mean Square Error) performance of a receive channel equalizer in ATSC(Advanced Television System Committee) 8VSB(Vestigial Side Band) digital terrestrial TV system. The proposed algorithm reduces the eigenvalue range of input data autocorrelation by transforming LMS (Least Mean Square) DFE into the subfilter of hierarchical structure. Moreover, the use of DCT and power estimation algorithm makes it possible to reduce the eigenvalue deviation of input data which results from distortion and delay of the receive signal in the miulti-path environment. Simulation results show that proposed DCT HLMS DFE has SNR improvement of approximately 3.8dB, 5dB and 2dB as compared to LMS DFE when the equalized symbol error rate is 0.2 in ATTC defined digital terrestrial TV broadcasting channels A, B and F, respectively.

Interference Cancellation Methods using the CMF(Constant Modulus Fourth) Algorithm for WCDMA RF Repeater (WCDMA 무선 중계기에서 CMF 알고리즘을 이용한 간섭 제거 방식)

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2011
  • In the paper, we propose a new CMF(Constant Modulus Fourth) algorithm for WCDMA(Wideband Code Multiple Access) RF(Radio Frequency) Repeater. CMF algorithm is proposed by modifying the CMA(Constant Modulus Algorithm) algorithm and improved performances are achieved by properly adjusting step size values. The steady state MSE(Mean Square Error) performance of the proposed CMF algorithm with step size of 0.35 is about 4dB better than that of the conventional CMA algorithm. And the proposed CMF algorithm requires 400~1100 less iterations than the LMS(Least Mean Square) and NLMS(Normalized Least Mean Square) algorithms at MSE of -25dB.

Convergence of the Filtered-x Least Mean Square Adaptive Algorithm for Active Noise Control of a Multiple Sinusoids (다중 정현파의 능동소음제어를 위한 Filtered-x 최소 평균제곱 적응 알고리듬 수렴 연구)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • Application of the filtered-x Least Mean Square(LMS) adaptive filter to active noise control requires to estimate the transfer characteristics between the output and the error signal of the adaptive controller. In this paper, we derive the filtered-x adaptive noise control algorithm and analyze its convergence behavior when the acoustic noise consists of multiple sinusoids. The results of the convergence analysis of the filtered-x LMS algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Simulation results are presented to support the theoretical convergence analysis.

Kurtosis Driven Variable Step-Size Normalized Least Mean Square Algorithm for RF Repeater

  • Han, Yong-Sik;Yang, Woon-Geun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.159-162
    • /
    • 2010
  • This paper presents a new Kurtosis driven Variable Step-Size Normalized Least Mean Square (KVSSN-LMS) algorithm to prevent repeater from oscillation due to feedback signal of radio frequency (RF) repeater. To get better Mean Square Error (MSE) performance, step-size is adjusted using the kurtosis. The proposed algorithm shows the better performance of steady state MSE. The proposed algorithm shows a better ERLE performance than that of KVSS-LMS, VSS-NLMS, NLMS algorithms.

A Comparative Study of the Parameter Estimation Method about the Software Mean Time Between Failure Depending on Makeham Life Distribution (메이크헴 수명분포에 의존한 소프트웨어 평균고장간격시간에 관한 모수 추정법 비교 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • For repairable software systems, the Mean Time Between Failure (MTBF) is used as a measure of software system stability. Therefore, the evaluation of software reliability requirements or reliability characteristics can be applied MTBF. In this paper, we want to compare MTBF in terms of parameter estimation using Makeham life distribution. The parameter estimates used the least square method which is regression analyzer method and the maximum likelihood method. As a result, the MTBF using the least square method shows a non-decreased pattern and case of the maximum likelihood method shows a non-increased form as the failure time increases. In comparison with the observed MTBF, MTBF using the maximum likelihood estimation is smallerd about difference of interval than the least square estimation which is regression analyzer method. Thus, In terms of MTBF, the maximum likelihood estimation has efficient than the regression analyzer method. In terms of coefficient of determination, the mean square error and mean error of prediction, the maximum likelihood method can be judged as an efficient method.

A Study on Adaptive Interference Cancellation System of RF Repeater Using the Grouped Constant-Modulus Algorithm (그룹화 CMA 알고리즘을 이용한 RF 중계기의 적응 간섭 제거 시스템(Adaptive Interference Cancellation System)에 관한 연구)

  • Han, Yong-Sik;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1058-1064
    • /
    • 2008
  • In this paper, we proposed a new hybrid interference canceller using the adaptive filter with Grouped CMA(Constant Modulus Algorithm)-LMS(Least Mean Square) algorithm in the RF(Radio Frequency) repeater. The feedback signal generated from transmitter antenna to receiver antenna reduces the performance of the receiver system. The proposed interference canceller has better channel adaptive performance and a lower MSE(Mean Square Error) than conventional structure because it uses the cancellation method of Grouped CMA algorithm. This structure reduces the number of iterations fur the same MSE performance and hardware complexity compared to conventional nonlinear interference canceller. Namely, MSE values of the proposed algorithm were lower than those of LMS algorithm by 2.5 dB and 4 dB according to step sizes. And the proposed algorithm showed fast speed of convergence and similar MSE performance compared to VSS(Variable Step Size)-LMS algorithm.