• Title/Summary/Keyword: Least Cost Path

Search Result 51, Processing Time 0.02 seconds

Development of Augmented Reality Walking Navigation App using Dijkstra Algorithm

  • Jeong, Cho-Hui;Lee, Myung-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • There are a variety of apps that are finding their way. And in car navigation, we launched a product that reflects Augmented Reality technology this year. However, existing apps have problems. It is implemented in 2D or 3D, has a large error range because it has been modified in most vehicles, is not updated in real time, and car augmented reality navigation is a vehicle, and a separate device is required, etc. In this study, we implemented a smartphone app for walking directions using augmented reality, and made it possible to intuitively use a route service from a user 's location to a destination. The Dijkstra algorithm is applied to calculate the shortest path to solve the problem of finding the route with the least cost. By using this application, it is possible to use the route search service even in a data-free environment, to solve the inconvenience of the language barrier, and to update in real time, so that the latest information can be always maintained. In the future, we want to develop an app that can be commercialized by using a character in the path to promote it.

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

Exploring the Priority Area of Policy-based Forest Road Construction using Spatial Information (공간정보를 활용한 산림정책 기반 임도시공 우선지역 선정 연구)

  • Sang-Wook, LEE;Chul-Hee, LIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.94-106
    • /
    • 2022
  • In order to increase timber self-sufficiency, Korea's 6th Basic Forest Plan aims to increase the density of forest roads to 12.8 m ha-1 by 2037. However, due to rapid re-forestation, current management infrastructure is insufficient, with just 4.8 m ha-1 of forest roads in 2017. This is partly due to time and cost limitations on the process of forest road feasibility evaluation, which considers factors such as topography and forest conditions. To solve this problem, we propose an eco-friendly and efficient forest road network planning method using a geographic information system (GIS), which can evaluate a potential road site remotely based on spatial information. To facilitate such planning, this study identifies forest road construction priorities that can be evaluated using spatial information, such as topography, forest type and forest disasters. A method of predicting the optimal route to connect a forest road with existing roads is also derived. Overlapping analysis was performed using GIS-MCE (which combines GIS with multi-criteria evaluation), targeting the areas of Cheongsong-gun and Buk-gu, Pohang-si, which have a low forest-road density. Each factor affecting the suitability of a proposed new forest road site was assigned a cost, creating a cost surface that facilitates prioritization for each forest type. The forest path's optimal route was then derived using least-cost path analysis. The results of this process were 30 forestry site recommendations in Cheongsong-gun and one in Buk-gu, Pohang-si; this would increase forest road density for the managed forest sites in Cheongsong-gun from 1.58 m ha-1 to 2.55 m ha-1. This evaluation method can contribute to the policy of increasing timber self-sufficiency by providing clear guidelines for selecting forest road construction sites and predicting optimal connections to the existing road network.

Advanced Cascade Multilevel Converter with Reduction in Number of Components

  • Ajami, Ali;Oskuee, Mohammad Reza Jannati;Mokhberdoran, Ataollah;Khosroshahi, Mahdi Toupchi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.127-135
    • /
    • 2014
  • In this paper a novel converter structure based on cascade converter family is presented. The suggested multilevel advanced cascade converter has benefits such as reduction in number of switches and power losses. Comparison depict that proposed topology has the least number of IGBTs among all multilevel cascade type converters which have been introduced recently. This characteristic causes low cost and small installation area for suggested converter. The number of on state switches in current path is less than conventional topologies and so the output voltage drop and power losses are decreased. Symmetric and asymmetric modes are analyzed and compared with conventional multilevel cascade converter. Simulation and experimental results are presented to illustrate validity, good performance and effectiveness of the proposed configuration. The suggested converter can be applied in medium/high voltage and PV applications.

Optimal Layout for Irrigation Pipeline Networks using Graph Theory (Graph 이론을 이용한 농업용 관수로망의 최적배치)

  • Im, Sang-Jun;Park, Seung-Woo;Cho, Jae-Pil
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.12-19
    • /
    • 2000
  • Irrigation pipeline networks consist mainly of buried pipes and are therefore relatively free from topographic constraints. Installation of irrigation pipeline systems is increasing since the systems have several advantages compared to open channel systems. To achieve economic design of pipeline networks, the layout should meet several conditions such as shortest path, maximum flow, and least cost. Graph theory is mathematical tool which enable to find out optimum layout for complicated network systems. In this study, applicability of graph theory to figure out optimum layout of irrigation pipeline networks was evaluated.

  • PDF

Optimisation of pipeline route in the presence of obstacles based on a least cost path algorithm and laplacian smoothing

  • Kang, Ju Young;Lee, Byung Suk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.492-498
    • /
    • 2017
  • Subsea pipeline route design is a crucial task for the offshore oil and gas industry, and the route selected can significantly affect the success or failure of an offshore project. Thus, it is essential to design pipeline routes to be eco-friendly, economical and safe. Obstacle avoidance is one of the main problems that affect pipeline route selection. In this study, we propose a technique for designing an automatic obstacle avoidance. The Laplacian smoothing algorithm was used to make automatically generated pipeline routes fairer. The algorithms were fast and the method was shown to be effective and easy to use in a simple set of case studies.

GIS-based Preliminary Feasibility Study for the Optimal Route Selection for China-India Railway through Nepal

  • Acharya, Tri Dev;Yang, In Tae;Lee, Dong Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.281-290
    • /
    • 2017
  • Transportation plays a vital role in sustainable development, and moreover, bulk transportation provides cost effective movement of goods and human beings with less environmental issues. Nepal is a developing country with increasing urbanization and transportation demands. The growing interest of China to connect with Southeast Asia through Nepal has led to ambitious project proposal of Rasuwa Gadhi to Birgunj Railways, which is the shortest route from China to India. Lack of updated geospatial data has lead the concerned authorities in Nepal to be dependent on analysis and proposals from donor nations. Taking such considerations, based on GIS and free data, this study explores optimal routes to connect cites using slope and land cover. Based on reclassified slope, two shortest optimal routes were found. One passing through Baireni in Dhading and another through Kathmandu towards Birgunj with length of around 172 Kilometers. The study shows that available open source data can be used of preliminary feasibility studies and yet shows limitations for detailed economy based planning. Development and use of high resolution updated geospatial data is of high necessity for Nepal to become self-sustained in planning of development works.

Factors Affecting Consumer Purchasing Behavior: A Green Marketing Perspective in Vietnam

  • LE, Quang Hung
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.433-444
    • /
    • 2021
  • The study seeks to identify the factors affecting the green marketing element of students' food purchasing decision at Co-opMart supermarket chain in Ho Chi Minh City through the application of a mix of qualitative and quantitative research methods that include probability sampling and convenient sampling of 400 students from Ho Chi Minh City University of Technology (HUTECH). The data are analyzed with SPSS software using Cronbach's Alpha, Exploratory Factor Analysis, Multiple Linear Regression and PATH model to test the model through the intermediate variable 'student's perception' and the hypotheses, identifying the green marketing effects on HUTECH students' food purchasing decisions at Ho Chi Minh City Co-opMart supermarket chain. The results of the study identify four factors of the green marketing mix (4Cs), namely, green commodity, green cost, green convenience, and green communication. All these factors have an influence on the student's food purchasing decision at Co-opMart supermarket. Cost is the strongest factor eliciting student's interest in purchasing green products, followed by convenience, then communication. Commodity has the least impact on green purchasing decision. This study proposes some feasible solutions for Co-opMart managers to attract more students using green food in the complex situation of contaminated food, which is extremely harmful to consumers' health.

Routing for Enhancing Source-Location Privacy with Low Delivery Latency in Sensor Networks (센서 네트워크에서 낮은 전달 지연으로 근원지 위치 기밀을 강화하는 라우팅)

  • Tscha, Yeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.636-645
    • /
    • 2008
  • Most of routing schemes that protect the source's location from a malicious attacker usually make use of a path of a long length per message for the sake of lengthening the safety period. The biggest problem to such approaches is taking a very long latency in transferring messages to the destination. In this paper we show the problem to find the least-cost single path that is enough to keep the source-location always secure from the attacker, provided that it is used for the delivery of a set of messages given in priori, is NP-complete. Consequently we propose a routing protocol GSLP-w(GPSR-based Source-Location Privacy with crew size co) that is a trade-off between two extreme approaches. The advantage of GSLP-co lies in its enhanced safety period for the source and its lowered delivery latency in messaging. We consider NSP(Normalized Sefety Period) and NDL(Normalized Delivery Latency), measured in terms of the least number of hops to the destination, to achieve tangible interpretation of the results. We ran a simulation to confirm our claim by generating 100 topologies of 50,000 nodes with the average number of neighbors being 8. The results show that GSLP-$\omega$ provides more enhanced NSP compared to other protocols GSLP, an earlier version of GSLP-$\omega$, and PR-SP(Phantom Routing - Single Path), the most notable existing protocol for the source-location privacy, and less NDL than that of GSLP but more than that of PR-SP.

Dynamic Single Path Routing Mechanism for Reliability and Energy-Efficiency in a Multi Hop Sensor Network (다중 홉 센서 네트워크에서 신뢰성과 에너지 효율성을 고려한 동적 단일경로 설정기법)

  • Choi, Seong-Yong;Kim, Jin-Su;Jung, Kyung-Yong;Han, Seung-Jin;Choi, Jun-Hyeog;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.31-40
    • /
    • 2009
  • What are important in wireless sensor networks are reliable data transmission, energy efficiency of each node, and the maximization of network life through the distribution of load among the nodes. The present study proposed DSPR, a dynamic unique path routing machanism that considered these requirements in wireless sensor networks. In DSPR, data is transmitted through a dynamic unique path, which has the least cost calculated with the number of hops from each node to the sink, and the average remaining energy. At that time, each node monitors its transmission process and if a node detects route damage it changes the route dynamically, referring to the cost table, and by doing so, it enhances the reliability of the network and distributes energy consumption evenly among the nodes. In addition, when the network topology is changed, only the part related to the change is restructured dynamically instead of restructuring the entire network, and the life of the network is extended by inhibiting unnecessary energy consumption in each node as much as possible. In the results of our experiment, the proposed DSPR increased network life by minimizing energy consumption of the nodes and improved the reliability and energy efficiency of the network.