• Title/Summary/Keyword: Learning structure optimization

Search Result 154, Processing Time 0.037 seconds

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

  • Khanteymoori, Ali Reza;Menhaj, Mohammad Bagher;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.39-49
    • /
    • 2011
  • A new structure learning approach for Bayesian networks based on asexual reproduction optimization (ARO) is proposed in this paper. ARO can be considered an evolutionary-based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter, the parent and its bud compete to survive according to a performance index obtained from the underlying objective function of the optimization problem: This leads to the fitter individual. The convergence measure of ARO is analyzed. The proposed method is applied to real-world and benchmark applications, while its effectiveness is demonstrated through computer simulations. Results of simulations show that ARO outperforms genetic algorithm (GA) because ARO results in a good structure and fast convergence rate in comparison with GA.

Machine learning-enabled parameterization scheme for aerodynamic shape optimization of wind-sensitive structures: A-proof-of-concept study

  • Shaopeng Li;Brian M. Phillips;Zhaoshuo Jiang
    • Wind and Structures
    • /
    • v.39 no.3
    • /
    • pp.175-190
    • /
    • 2024
  • Aerodynamic shape optimization is very useful for enhancing the performance of wind-sensitive structures. However, shape parameterization, as the first step in the pipeline of aerodynamic shape optimization, still heavily depends on empirical judgment. If not done properly, the resulting small design space may fail to cover many promising shapes, and hence hinder realizing the full potential of aerodynamic shape optimization. To this end, developing a novel shape parameterization scheme that can reflect real-world complexities while being simple enough for the subsequent optimization process is important. This study proposes a machine learning-based scheme that can automatically learn a low-dimensional latent representation of complex aerodynamic shapes for bluff-body wind-sensitive structures. The resulting latent representation (as design variables for aerodynamic shape optimization) is composed of both discrete and continuous variables, which are embedded in a hierarchy structure. In addition to being intuitive and interpretable, the mixed discrete and continuous variables with the hierarchy structure allow stakeholders to narrow the search space selectively based on their interests. As a proof-of-concept study, shape parameterization examples of tall building cross sections are used to demonstrate the promising features of the proposed scheme and guide future investigations on data-driven parameterization for aerodynamic shape optimization of wind-sensitive structures.

Optimal Learning of Fuzzy Neural Network Using Particle Swarm Optimization Algorithm

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.421-426
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes particle swarm optimization algorithm based optimal learning fuzzy-neural network (PSOA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by particle swarm optimization algorithm. The learning algorithm of the PSOA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, particle swarm optimization algorithm is used for tuning of membership functions of the proposed model.

  • PDF

A Study on the Structure Optimization of Multilayer Neural Networks using Rough Set Theory (러프집합을 이용한 다층 신경망의 구조최적화에 관한 연구)

  • Chung, Young-June;Jun, Hyo-Byung;Sim, Kwee-Bo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.82-88
    • /
    • 1999
  • In this paper, we propose a new structure optimization method of multilayer neural networks which begin and carry out learning from a bigger network. This method redundant links and neurons according to the rough set theory. In order to find redundant links, we analyze the variations of all weights and output errors in every step of the learning process, and then make the decision table from their variation of weights and output errors. We can find the redundant links from the initial structure by analyzing the decision table using the rough set theory. This enables us to build a structure as compact as possible, and also enables mapping between input and output. We show the validity and effectiveness of the proposed algorithm by applying it to the XOR problem.

  • PDF

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Optimization of Deep Learning Model Using Genetic Algorithm in PET-CT Image Alzheimer's Classification (PET-CT 영상 알츠하이머 분류에서 유전 알고리즘 이용한 심층학습 모델 최적화)

  • Lee, Sanghyeop;Kang, Do-Young;Song, Jongkwan;Park, Jangsik
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1129-1138
    • /
    • 2020
  • The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.

New learning algorithm to solve the inverse optimization problems

  • Aoyama, Tomoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.42.2-42
    • /
    • 2002
  • We discuss a neural network solver for the inverse optimization problem. The problem is that find functional relations between input and output data, which are include defects. Finding the relations, predictions of the defect parts are also required. The part of finding the defects in the input data is an inverse problem . We consider the meanings to solve the problem on the neural network system at first. Next, we consider the network structure of the system, the learning scheme of the network, and at last, examine the precision on the numerical calculations. In the paper, we proposed the high-precision learning method for plural three-layer neural network system that is series-connect...

  • PDF

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.