• Title/Summary/Keyword: Learning pattern

Search Result 1,296, Processing Time 0.028 seconds

Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System (학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링)

  • Park, Gwi-Tae;Kim, Dong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

Learning and inference of fuzzy inference system with fuzzy neural network (퍼지 신경망을 이용한 퍼지 추론 시스템의 학습 및 추론)

  • 장대식;최형일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.118-130
    • /
    • 1996
  • Fuzzy inference is very useful in expressing ambiguous problems quantitatively and solving them. But like the most of the knowledge based inference systems. It has many difficulties in constructing rules and no learning capability is available. In this paper, we proposed a fuzzy inference system based on fuzy associative memory to solve such problems. The inference system proposed in this paper is mainly composed of learning phase and inference phase. In the learning phase, the system initializes it's basic structure by determining fuzzy membership functions, and constructs fuzzy rules in the form of weights using learning function of fuzzy associative memory. In the inference phase, the system conducts actual inference using the constructed fuzzy rules. We applied the fuzzy inference system proposed in this paper to a pattern classification problem and show the results in the experiment.

  • PDF

Analysis of the fokker-plank equation for the dynamics of langevine cometitive learning neural network (Fokker-plank 방정식의 해석을 통한 Langevine 경쟁학습의 동역학 분석)

  • 석진욱;조성원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.82-91
    • /
    • 1997
  • In this paper, we analyze the dynamics of langevine competitive learning neural network based on its fokker-plank equation. From the viewpont of the stochastic differential equation (SDE), langevine competitive learning equation is one of langevine stochastic differential equation and has the diffusin equation on the topological space (.ohm., F, P) with probability measure. We derive the fokker-plank equation from the proposed algorithm and prove by introducing a infinitestimal operator for markov semigroups, that the weight vector in the particular simplex can converge to the globally optimal point under the condition of some convex or pseudo-convex performance measure function. Experimental resutls for pattern recognition of the remote sensing data indicate the superiority of langevine competitive learning neural network in comparison to the conventional competitive learning neural network.

  • PDF

A study for improvement of Recognition velocity of Korean Character using Neural Oscillator (신경 진동자를 이용한 한글 문자의 인식 속도의 개선에 관한 연구)

  • Kwon, Yong-Bum;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.491-494
    • /
    • 2004
  • Neural Oscillator can be applied to oscillatory systems such as the image recognition, the voice recognition, estimate of the weather fluctuation and analysis of geological fluctuation etc in nature and principally, it is used often to pattern recoglition of image information. Conventional BPL(Back-Propagation Learning) and MLNN(Multi Layer Neural Network) are not proper for oscillatory systems because these algorithm complicate Learning structure, have tedious procedures and sluggish convergence problem. However, these problems can be easily solved by using a synchrony characteristic of neural oscillator with PLL(phase-Locked Loop) function and by using a simple Hebbian learning rule. And also, Recognition velocity of Korean Character can be improved by using a Neural Oscillator's learning accelerator factor η$\_$ij/

  • PDF

Optimal Synthesis of Binary Neural Network using NETLA (NETLA를 이용한 이진 신경회로망의 최적합성)

  • 정종원;성상규;지석준;최우진;이준탁
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.273-277
    • /
    • 2002
  • This paper describes an optimal synthesis method of binary neural network(BNN) for an approximation problem of a circular region and synthetic image having four class using a newly proposed learning algorithm. Our object is to minimize the number of connections and neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm(NETLA) based on the multilayer BNN. The synthesis method in the NETLA is based on the extension principle of Expanded and Truncated Learning (ETL) learning algorithm using the multilayer perceptron and is based on Expanded Sum of Product (ESP) as one of the boolean expression techniques. The number of the required neurons in hidden layer can be reduced and fasted for learning pattern recognition.. The superiority of this NETLA to other algorithms was proved by simulation.

  • PDF

Competitive Learning Neural Network with Dynamic Output Neuron Generation (동적으로 출력 뉴런을 생성하는 경쟁 학습 신경회로망)

  • 김종완;안제성;김종상;이흥호;조성원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.133-141
    • /
    • 1994
  • Conventional competitive learning algorithms compute the Euclidien distance to determine the winner neuron out of all predetermined output neurons. In such cases, there is a drawback that the performence of the learning algorithm depends on the initial reference(=weight) vectors. In this paper, we propose a new competitive learning algorithm that dynamically generates output neurons. The proposed method generates output neurons by dynamically changing the class thresholds for all output neurons. We compute the similarity between the input vector and the reference vector of each output neuron generated. If the two are similar, the reference vector is adjusted to make it still more like the input vector. Otherwise, the input vector is designated as the reference vector of a new outputneuron. Since the reference vectors of output neurons are dynamically assigned according to input pattern distribution, the proposed method gets around the phenomenon that learning is early determined due to redundant output neurons. Experiments using speech data have shown the proposed method to be superior to existint methods.

  • PDF

A Study on EMG Signals Recognition using Time Delayed Counterpropagation Neural Network (시간 지연을 갖는 쌍전파 신경회로망을 이용한 근전도 신호인식에 관한 연구)

  • Kwon, Jangwoo;Jung, Inkil;Hong, Seunghong
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.395-401
    • /
    • 1996
  • In this paper a new neural network model, time delayed counterpropagation neural networks (TDCPN) which have high recognition rate and short total learning time, is proposed for electromyogram(EMG) recognition. Signals the proposed model increases the recognition rates after learned the regional temporal correlation of patterns using time delay properties in input layer, and decreases the learning time by using winner-takes-all learning rule. The ouotar learning rule is put at the output layer so that the input pattern is able to map a desired output. We test the performance of this model with EMG signals collected from a normal subject. Experimental results show that the recognition rates of the suggested model is better and the learning time is shorter than those of TDNN and CPN.

  • PDF

Optimal Learning Rates in Gradient Descent Training of Multilayer Perceptrons (다층퍼셉트론의 강하 학습을 위한 최적 학습률)

  • 오상훈
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.99-105
    • /
    • 2004
  • This paper proposes optimal learning rates in the gradient descent training of multilayer perceptrons, which are a separate learning rate for weights associated with each neuron and a separate one for assigning virtual hidden targets associated with each training pattern Effectiveness of the proposed error function was demonstrated for a handwritten digit recognition and an isolated-word recognition tasks and very fast learning convergence was obtained.

  • PDF

DNA Inspired CVD Diagnostic Hardware Architecture (DNA 특성을 모방한 심혈관질환 진단용 하드웨어)

  • Kwon, Oh-Hyuk;Kim, Joo-Kyung;Ha, Jung-Woo;Park, Jea-Hyun;Chung, Duck-Jin;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.320-326
    • /
    • 2008
  • In this paper, we propose a new algorithm emulating the DNA characteristics for noise-tolerant pattern matching problem on digital system. The digital pattern matching becomes core technology in various fields, such as, robot vision, remote sensing, character recognition, and medical diagnosis in particular. As the properties of natural DNA strands allow hybridization with a certain portion of incompatible base pairs, DNA-inspired data structure and computation technique can be adopted to bio-signal pattern classification problems which often contain imprecise data patterns. The key feature of noise-tolerance of DNA computing comes from control of reaction temperature. Our hardware system mimics such property to diagnose cardiovascular disease and results superior classification performance over existing supervised learning pattern matching algorithms. The hardware design employing parallel architecture is also very efficient in time and area.

Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation (무학습 근전도 패턴 인식 알고리즘: 부분 수부 절단 환자 사례 연구)

  • Park, Seongsik;Lee, Hyun-Joo;Chung, Wan Kyun;Kim, Keehoon
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2019
  • Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.