• Title/Summary/Keyword: Learning factory

Search Result 108, Processing Time 0.023 seconds

Machine Learning based on Approach for Classification of Abnormal Data in Shop-floor (제조 현장의 비정상 데이터 분류를 위한 기계학습 기반 접근 방안 연구)

  • Shin, Hyun-Juni;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2037-2042
    • /
    • 2017
  • The manufacturing facility is generally operated by a pre-set program under the existing factory automation system. On the other hand, the manufacturing facility must decide how to operate autonomously in Industry 4.0. Determining the operation mode of the production facility itself means, for example, that it detects the abnormality such as the deterioration of the facility at the shop-floor, prediction of the occurrence of the problem, detection of the defect of the product, In this paper, we propose a manufacturing process modeling using a queue for detection of manufacturing process abnormalities at the shop-floor, and detect abnormalities in the modeling using SVM, one of the machine learning techniques. The queue was used for M / D / 1 and the conveyor belt manufacturing system was modeled based on ${\mu}$, ${\lambda}$, and ${\rho}$. SVM was used to detect anomalous signs through changes in ${\rho}$.

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

Prediction of Defect Rate Caused by Meteorological Factors in Automotive Parts Painting (기상환경에 따른 자동차 부품 도장의 불량률 예측)

  • Pak, Sang-Hyon;Moon, Joon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.290-291
    • /
    • 2021
  • Defects in the coating process of plastic automotive components are caused by various causes and phenomena. The correlation between defect occurrence rate and meteorological and environmental conditions such as temperature, humidity, and fine dust was analyzed. The defect rate data categorized by type and cause was collected for a year from a automotive parts coating company. This data and its correlation with environmental condition was acquired and experimented by machine learning techniques to predict the defect rate at a certain environmental condition. Correspondingly, the model predicted 98% from fine dust and 90% from curtaining (runs, sags) and hence proved its reliability.

  • PDF

Anomaly Detection and Performance Analysis using Deep Learning (딥러닝을 활용한 설비 이상 탐지 및 성능 분석)

  • Hwang, Ju-hyo;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.78-81
    • /
    • 2021
  • Through the smart factory construction project, sensors can be installed in manufacturing production facilities and various process data can be collected in real time. Through this, research on real-time facility anomaly detection is being actively conducted to reduce production interruption due to facility abnormality in the manufacturing process. In this paper, to detect abnormalities in production facilities, the manufacturing data was applied to deep learning models Autoencoder(AE), VAE(Variational Autoencoder), and AAE(Adversarial Autoencoder) to derive the results. Manufacturing data was used as input data through a simple moving average technique and preprocessing process, and performance analysis was conducted according to the window size of the simple movement average technique and the feature vector size of the AE model.

  • PDF

Anomaly Detection of Machining Process based on Power Load Analysis (전력 부하 분석을 통한 절삭 공정 이상탐지)

  • Jun Hong Yook;Sungmoon Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.173-180
    • /
    • 2023
  • Smart factory companies are installing various sensors in production facilities and collecting field data. However, there are relatively few companies that actively utilize collected data, academic research using field data is actively underway. This study seeks to develop a model that detects anomalies in the process by analyzing spindle power data from a company that processes shafts used in automobile throttle valves. Since the data collected during machining processing is time series data, the model was developed through unsupervised learning by applying the Holt Winters technique and various deep learning algorithms such as RNN, LSTM, GRU, BiRNN, BiLSTM, and BiGRU. To evaluate each model, the difference between predicted and actual values was compared using MSE and RMSE. The BiLSTM model showed the optimal results based on RMSE. In order to diagnose abnormalities in the developed model, the critical point was set using statistical techniques in consultation with experts in the field and verified. By collecting and preprocessing real-world data and developing a model, this study serves as a case study of utilizing time-series data in small and medium-sized enterprises.

On Study for the JIT System By CIM(Computer Integrated Mfg) (JIT실현을 위한 CIM구축 사례연구)

  • Lee, Jong-Hyung;Lee, Youn-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • This study for Customer Satisfaction(Customer Focus) by Profit security' in the field Process improvement activity and man-power upgrade in the learning of organization activity or upgrading ability of each peoples. This thesis study on the focus of KAPEC which introduce Toyota system can apply to VM, 3jeong, Right Box and Right Position), 5S, JIT(Just In Time), KAlZEN, KANBAN System, CIM, ERP, DAS an output of Factory. For strategic changes to take place in industry 3 key important factors need to be included ; integration of tasks functions and process, decentralization of information and responsibility and finally simplification of products and product structures. These describes how CIM can be implemented using these factors. This study for (1)System Integration, (2) Help Logistic Problems, (3) Partly facilitated growth. (4) Improved production planning (5) Real-time management. (6) Fast reporting (7) Productivity. Quality. Delivery Up, Cost reduction and Autonomy management, FMS in the Plant etc.

  • PDF

Signal Processing Algorithm for High Precision Encoder (초정밀 엔코더를 위한 신호처리기법개발)

  • 정규원
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.103-110
    • /
    • 2000
  • Shaft encoder which encodes the rotational angle of a shaft becomes more important recently due to factory automation and office automation. Although an absolute type encoder is more dsirable due to its convenience an incremental encoder is commonly used because of its cost and technical difficulties Fabricating a high resolution absolute encoder is very diff-cult because the physical size is limited by currently available technology. In order to overcome this difficulty Moire fringe can be used incorporated with gray code. In order to measure the position of fringes which move as the code disk rotates a neural network was developed in this paper. Formerly fringe position is usually measured by a sophisticated software which needs a little long calculation time. However using nerual network method can eliminate such calculation time even though it needs learning job The pro-posed method is verified through several experiments.

  • PDF

Image Enhanced Machine Vision System for Smart Factory

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2021
  • Machine vision is a technology that helps the computer as if a person recognizes and determines things. In recent years, as advanced technologies such as optical systems, artificial intelligence and big data advanced in conventional machine vision system became more accurate quality inspection and it increases the manufacturing efficiency. In machine vision systems using deep learning, the image quality of the input image is very important. However, most images obtained in the industrial field for quality inspection typically contain noise. This noise is a major factor in the performance of the machine vision system. Therefore, in order to improve the performance of the machine vision system, it is necessary to eliminate the noise of the image. There are lots of research being done to remove noise from the image. In this paper, we propose an autoencoder based machine vision system to eliminate noise in the image. Through experiment proposed model showed better performance compared to the basic autoencoder model in denoising and image reconstruction capability for MNIST and fashion MNIST data sets.

Industrial Process Monitoring and Fault Diagnosis Based on Temporal Attention Augmented Deep Network

  • Mu, Ke;Luo, Lin;Wang, Qiao;Mao, Fushun
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.242-252
    • /
    • 2021
  • Following the intuition that the local information in time instances is hardly incorporated into the posterior sequence in long short-term memory (LSTM), this paper proposes an attention augmented mechanism for fault diagnosis of the complex chemical process data. Unlike conventional fault diagnosis and classification methods, an attention mechanism layer architecture is introduced to detect and focus on local temporal information. The augmented deep network results preserve each local instance's importance and contribution and allow the interpretable feature representation and classification simultaneously. The comprehensive comparative analyses demonstrate that the developed model has a high-quality fault classification rate of 95.49%, on average. The results are comparable to those obtained using various other techniques for the Tennessee Eastman benchmark process.

Future Trends of AI-Based Smart Systems and Services: Challenges, Opportunities, and Solutions

  • Lee, Daewon;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.717-723
    • /
    • 2019
  • Smart systems and services aim to facilitate growing urban populations and their prospects of virtual-real social behaviors, gig economies, factory automation, knowledge-based workforce, integrated societies, modern living, among many more. To satisfy these objectives, smart systems and services must comprises of a complex set of features such as security, ease of use and user friendliness, manageability, scalability, adaptivity, intelligent behavior, and personalization. Recently, artificial intelligence (AI) is realized as a data-driven technology to provide an efficient knowledge representation, semantic modeling, and can support a cognitive behavior aspect of the system. In this paper, an integration of AI with the smart systems and services is presented to mitigate the existing challenges. Several novel researches work in terms of frameworks, architectures, paradigms, and algorithms are discussed to provide possible solutions against the existing challenges in the AI-based smart systems and services. Such novel research works involve efficient shape image retrieval, speech signal processing, dynamic thermal rating, advanced persistent threat tactics, user authentication, and so on.