• 제목/요약/키워드: Learning factory

검색결과 108건 처리시간 0.025초

A Quantitative Review on Deep Learning and Smart Factory from 2010 to 2023

  • Yong Sauk Hau
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.203-208
    • /
    • 2024
  • The convergence of deep learning and smart factory is drawing a lot of attentions from not only industrial but also academic circles. The objective of this article is to quantitatively review on deep learning and smart factory from 2010 to 2023. This research analyzed the 138 articles, extracted from the Core Collection of Web of Science, in terms of four dimensions such as the main trend in article publications, the main trend in article citations, the distribution of article publications by research area, and the keywords representing the main contents of published articles. The quantitative review results reveal the following four points: First, the article publications drastically grew from 2019 to 2022 in its annual trend. Second, the article citations have rapidly grown since 2018. Third, Engineering, Computer Science, and Telecommunications are the top 3 research areas composing the 138 articles. Fourth, it is the top 10 keywords such as 'deep', 'learning', 'smart', 'detection', factory', 'data', 'system', 'manufacturing', 'neural', and 'network' that represent the main contents of the 138 articles published from 2010 to 2023 in deep learning and smart factory. These findings revealed by this quantitative review will be significantly useful for deepening and widening relevant future research on deep learning and smart factory.

머신러닝 기법을 활용한 공장 에너지 사용량 데이터 분석 (Machine Learning Approach for Pattern Analysis of Energy Consumption in Factory)

  • 성종훈;조영식
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권4호
    • /
    • pp.87-92
    • /
    • 2019
  • 본 연구에서는 머신 러닝 기법을 활용하여 공장에서 발생하는 에너지 사용량에 대한 데이터 분석 및 패턴 추출에 대해 다룬다. 통계학이나 기존의 방법들은 몇 가지 물리적 특성을 반영하는 수학적 모델을 구축하는 반면, 머신 러닝을 통한 접근방법은 데이터 학습을 통하여 모델의 계수들을 결정하게 된다. 기존의 방법들은 특정한 구조를 갖는 수학적 모델을 구축해야 한다는 어려움이 있으며 과연 데이터의 특징들을 잘 반영하는지에 대한 의문이 존재했다. 그러나 머신 러닝을 통한 방법은 사람이 구축하기 어려운 작업들을 용이하게 구축한다는 장점을 가지고 있기 때문에 데이터 간의 관계를 파악하기에 더 효율적이라는 장점을 가지고 있다. 공장의 에너지 소비에 직접적으로 영향을 끼치는 요소들이 존재하며 이러한 전력 소비는 시간에 따른 데이터로 나타나게 된다. 각 요소들로부터 발생하는 소비 전력을 계측하고 데이터 베이스를 구축하기 위해 각 요소에 센서를 장착하였다. 취득된 데이터에 대해 전처리 과정 및 통계적인 분석을 거친 뒤, 머신 러닝을 통해 패턴을 분석하는 과정을 거쳤다. 이를 통해 공장에서 발생하는 소비 전력 데이터에 대한 패턴 분석을 진행하였다.

러닝팩토리기반 기술융합교육을 통한 텔리 오퍼레이션 로봇핸드 구현 사례 연구 (A Case Study on the Implementation of Tele-Operation Robot Hand by Learning Factory based Technology Convergence Education)

  • 홍창호;이정훈;김형오
    • 실천공학교육논문지
    • /
    • 제10권2호
    • /
    • pp.113-118
    • /
    • 2018
  • 직업교육훈련에서 가장 중요한 것은 생산현장의 전체공정에 대한 학생들의 흥미와 이해를 높이는 일이다. 본 논문에서는 최근 화두가 되고 있는 러닝팩토리(Learning Factory) 기반 기술융합교육을 통해서 텔리오퍼레이션 로봇 핸드를 구현하는 사례를 제시하고 향후 교육과정에 적용시 유의사항을 제안한다. 텔리 오퍼레이션 로봇핸드를 구현하기 위해서는 기구 설계, 모터제어, 근거리 통신 구현, 센싱 및 피드백제어 등 국내 교육과정의 대학교 수준 전공필수 교과목에 대한 이해가 뒷받침 되어야 한다. 본 논문에서 제시한 교육연구는 학생들이 필요로 하는 기술을 가이드하며 학생 스스로 학습과 실습을 통해 기술을 이해하고 최종 산출물을 구현하는 사례이다. 본 연구를 통해 향후 러닝팩토리 교육훈련과정을 도입하는 경우 기반 자료로 도움이 될 것이다.

Anomaly Detection of Facilities and Non-disruptive Operation of Smart Factory Using Kubernetes

  • Jung, Guik;Ha, Hyunsoo;Lee, Sangjun
    • Journal of Information Processing Systems
    • /
    • 제17권6호
    • /
    • pp.1071-1082
    • /
    • 2021
  • Since the smart factory has been recently recognized as an industrial core requirement, various mechanisms to ensure efficient and stable operation have attracted much attention. This attention is based on the fact that in a smart factory environment where operating processes, such as facility control, data collection, and decision making are automated, the disruption of processes due to problems such as facility anomalies causes considerable losses. Although many studies have considered methods to prevent such losses, few have investigated how to effectively apply the solutions. This study proposes a Kubernetes based system applied in a smart factory providing effective operation and facility management. To develop the system, we employed a useful and popular open source project, and adopted deep learning based anomaly detection model for multi-sensor anomaly detection. This can be easily modified without interruption by changing the container image for inference. Through experiments, we have verified that the proposed method can provide system stability through nondisruptive maintenance, monitoring and non-disruptive updates for anomaly detection models.

스마트 팩토리에서 그리드 분류 시스템의 협력적 다중 에이전트 강화 학습 기반 행동 제어 (Cooperative Multi-Agent Reinforcement Learning-Based Behavior Control of Grid Sortation Systems in Smart Factory)

  • 최호빈;김주봉;황규영;김귀훈;홍용근;한연희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권8호
    • /
    • pp.171-180
    • /
    • 2020
  • 스마트 팩토리는 설계, 개발, 제조 및 유통 등 생산과정 전반이 디지털 자동화 솔루션으로 이루어져 있으며, 내부 설비와 기계에 사물인터넷(IoT)을 설치해 공정 데이터를 실시간으로 수집하고 이를 분석해 스스로 제어할 수 있게 하는 지능형 공장이다. 스마트 팩토리의 장비들은 게임과 같이 가상의 캐릭터가 하나의 객체 단위로 구동되는 것이 아니라 수많은 하드웨어가 물리적으로 조합되어 연동한다. 즉, 특정한 공동의 목표를 위해 다수의 장치가 개별적인 행동을 동시다발적으로 수행해야 한다. 공정 데이터를 실시간으로 수집할 수 있는 스마트 팩토리의 장점을 활용하여, 일반적인 기계 학습이 아닌 강화 학습을 사용하면 미리 요구되는 훈련 데이터 없이 행동 제어를 할 수 있다. 하지만, 현실 세계에서는 물리적 마모, 시간적 문제 등으로 인해 수천만 번 이상의 반복 학습이 불가능하다. 따라서, 본 논문에서는 시뮬레이터를 활용해 스마트 팩토리 분야에서 복잡한 환경 중 하나인 이송 설비에 초점을 둔 그리드 분류 시스템을 개발하고 협력적 다중 에이전트 기반의 강화 학습을 설계하여 효율적인 행동 제어가 가능함을 입증한다.

Application of Smart Factory Model in Vietnamese Enterprises: Challenges and Solutions

  • Quoc Cuong Nguyen;Hoang Tuan Nguyen;Jaesang Cha
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.265-275
    • /
    • 2024
  • Smart factory is a remarkable development from traditional manufacturing systems to data-based smart manufacturing systems that can connect and process data continuously, collected from machines, production equipment to production and business processes, capable of supporting workers in making decisions or performing work automatically. Smart factory is the key and center of the fourth industrial revolution, combining improvements in traditional manufacturing activities with digital technology to help factories achieve greater efficiency, contributing to increased revenue and reduce operating costs for businesses. Besides, the importance of smart factories is to make production more quality, efficient, competitive and sustainable. Businesses in Vietnam are in the process of learning and applying smart factory models. However, the number of businesses applying the pine factory model is still limited due to many barriers and difficulties. Therefore, in this paper we conduct a survey to assess the needs and current situation of businesses in applying smart factories and propose some specific solutions to develop and promote application of smart factory model in Vietnamese businesses.

스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계 (Design of Efficient Edge Computing based on Learning Factors Sharing with Cloud in a Smart Factory Domain)

  • 황지온
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2167-2175
    • /
    • 2017
  • 최근 사물인터넷은 인공지능의 발전, 연결된 기기의 증가와 클라우드 시스템의 높은 성능으로 인해 급격하게 발전하고 있다. 많은 기기와 센서로부터 생산되는 엄청난 양의 데이터들은 지능적 진단, 추천 서비스 뿐 아니라 스마트 관제 서비스와 같이 서비스 영역의 확대를 이끌고 있다. 엣지 컴퓨팅(Edge Computing)에 대한 연구는 높은 성능을 지닌 하드웨어를 바탕으로 작은 또 하나의 서버로써의 역할에 국한되어 연구되고 있다. 그러나 데이터를 분석하고 의미성에 따른 서비스를 구현하기 위해서는 범용적 서버로써의 역할보다는 도메인에 특화된 기능과 요구사항을 지녀야 한다. 스마트 팩토리에서의 엣지는 제한적 필터링, 사전 포맷팅을 포함하는 전처리와 그룹 컨텍스트 융합, 지역적 룰의 관리 등을 필요로 한다. 따라서 본 논문에서는 공장 특성에 맞는 효율성과 강건함 측면을 강조하는 요구사항들을 도출하고, 클라우드와 학습된 요소 공유 방법을 기반으로 하는 엣지 컴퓨팅의 구조를 제안하고자 한다. 이 엣지는 네트워크 자원 소모를 감소시키고 룰과 학습화된 모델의 변경을 쉽게 할 수 있도록 한다.

DEVELOPMENT OF A VIRTUAL FORGING FACTORY FRAMEWORK

  • Kao Yung-Chou;Sung Wen-Hsu;Huang Wei-Shin
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.115-122
    • /
    • 2003
  • This paper presents the development of a virtual forging factory framework. The technologies of virtual reality and relational database had been integrated in the developed framework using Microsoft $Windows^{(R)}$ programming as the main technique so as to emulate a physical forging factory. The developed virtual forging factory consists of forging cells and a forging cell is comprised of forging machine, forging die, and forging operations forming a forging production line. The technology of virtual reality had been successfully adopted in the production simulation of manufacturing such as CNC and robotics. However, the application in virtual forging factory seems to have not been studied yet. Potential application of a virtual forging factory can be beneficial to (1) computer aided instruction, (2) shorten the learning curve of a novice, (3) remote diagnosis and monitoring when remote monitoring and control technology and signal inspection is considered, (4) improve adverse forging environment when remote forging technology is applied, and (5) virtual reality application.

  • PDF

공장전력 사용량 데이터 기반 LSTM을 이용한 공장전력 사용량 예측모델 (Factory power usage prediciton model using LSTM based on factory power usage data)

  • 고병길;성종훈;조영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.817-819
    • /
    • 2019
  • 다양한 학습 모델이 발전하고 있는 지금, 학습을 통한 다양한 시도가 진행되고 있다. 이중 에너지 분야에서 많은 연구가 진행 중에 있으며, 대표적으로 BEMS(Building energy Management System)를 볼 수 있다. BEMS의 경우 건물을 기준으로 건물에서 생성되는 다양한 DATA를 이용하여, 에너지 예측 및 제어하는 다양한 기술이 발전해가고 있다. 하지만 FEMS(Factory Energy Management System)에 관련된 연구는 많이 발전하지 못했으며, 이는 BEMS와 FEAMS의 차이에서 비롯된다. 본 연구에서는 실제 공장에서 수집한 DATA를 기반으로 하여, 전력량 예측을 하였으며 예측을 위한 기술로 시계열 DATA 분석 방법인 LSTM 알고리즘을 이용하여 진행하였다.

결함 분류를 위한 CNN 분석 (CNN Analysis for Defect Classification)

  • 오준택;강현우;김수빈;장병록
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.65-66
    • /
    • 2021
  • 본 논문에서는 Smart Factory의 자동 공정에서 결함의 분류를 실시간으로 시도하여 자동 공정 제어를 위한 결함 분류 딥러닝 기법을 제안하고, Pooling 종류에 따른 분류 성능을 비교한다. Smart Factory 구축에 있어서 CNN을 이용한 공정 제어를 통해 제품 생산에 있어서 생산량의 증가와 불량률의 감소를 이루어내는 것이 가능하다. Smart Factory는 자동화 공정이므로 결함의 분류 속도가 중요하지만, 생산량의 증가와 불량률의 감소를 위해서는 정확하게 결함의 종류를 분류하여 Smart Factory의 공정을 제어하는 것이 더욱 중요하다. 본 논문에서는 Pooling을 Max Pooling과 Averrage Pooling을 복합적으로 설정하였을 때 높은 성능을 보였다.

  • PDF