International Journal of Internet, Broadcasting and Communication
/
제16권2호
/
pp.203-208
/
2024
The convergence of deep learning and smart factory is drawing a lot of attentions from not only industrial but also academic circles. The objective of this article is to quantitatively review on deep learning and smart factory from 2010 to 2023. This research analyzed the 138 articles, extracted from the Core Collection of Web of Science, in terms of four dimensions such as the main trend in article publications, the main trend in article citations, the distribution of article publications by research area, and the keywords representing the main contents of published articles. The quantitative review results reveal the following four points: First, the article publications drastically grew from 2019 to 2022 in its annual trend. Second, the article citations have rapidly grown since 2018. Third, Engineering, Computer Science, and Telecommunications are the top 3 research areas composing the 138 articles. Fourth, it is the top 10 keywords such as 'deep', 'learning', 'smart', 'detection', factory', 'data', 'system', 'manufacturing', 'neural', and 'network' that represent the main contents of the 138 articles published from 2010 to 2023 in deep learning and smart factory. These findings revealed by this quantitative review will be significantly useful for deepening and widening relevant future research on deep learning and smart factory.
본 연구에서는 머신 러닝 기법을 활용하여 공장에서 발생하는 에너지 사용량에 대한 데이터 분석 및 패턴 추출에 대해 다룬다. 통계학이나 기존의 방법들은 몇 가지 물리적 특성을 반영하는 수학적 모델을 구축하는 반면, 머신 러닝을 통한 접근방법은 데이터 학습을 통하여 모델의 계수들을 결정하게 된다. 기존의 방법들은 특정한 구조를 갖는 수학적 모델을 구축해야 한다는 어려움이 있으며 과연 데이터의 특징들을 잘 반영하는지에 대한 의문이 존재했다. 그러나 머신 러닝을 통한 방법은 사람이 구축하기 어려운 작업들을 용이하게 구축한다는 장점을 가지고 있기 때문에 데이터 간의 관계를 파악하기에 더 효율적이라는 장점을 가지고 있다. 공장의 에너지 소비에 직접적으로 영향을 끼치는 요소들이 존재하며 이러한 전력 소비는 시간에 따른 데이터로 나타나게 된다. 각 요소들로부터 발생하는 소비 전력을 계측하고 데이터 베이스를 구축하기 위해 각 요소에 센서를 장착하였다. 취득된 데이터에 대해 전처리 과정 및 통계적인 분석을 거친 뒤, 머신 러닝을 통해 패턴을 분석하는 과정을 거쳤다. 이를 통해 공장에서 발생하는 소비 전력 데이터에 대한 패턴 분석을 진행하였다.
직업교육훈련에서 가장 중요한 것은 생산현장의 전체공정에 대한 학생들의 흥미와 이해를 높이는 일이다. 본 논문에서는 최근 화두가 되고 있는 러닝팩토리(Learning Factory) 기반 기술융합교육을 통해서 텔리오퍼레이션 로봇 핸드를 구현하는 사례를 제시하고 향후 교육과정에 적용시 유의사항을 제안한다. 텔리 오퍼레이션 로봇핸드를 구현하기 위해서는 기구 설계, 모터제어, 근거리 통신 구현, 센싱 및 피드백제어 등 국내 교육과정의 대학교 수준 전공필수 교과목에 대한 이해가 뒷받침 되어야 한다. 본 논문에서 제시한 교육연구는 학생들이 필요로 하는 기술을 가이드하며 학생 스스로 학습과 실습을 통해 기술을 이해하고 최종 산출물을 구현하는 사례이다. 본 연구를 통해 향후 러닝팩토리 교육훈련과정을 도입하는 경우 기반 자료로 도움이 될 것이다.
Since the smart factory has been recently recognized as an industrial core requirement, various mechanisms to ensure efficient and stable operation have attracted much attention. This attention is based on the fact that in a smart factory environment where operating processes, such as facility control, data collection, and decision making are automated, the disruption of processes due to problems such as facility anomalies causes considerable losses. Although many studies have considered methods to prevent such losses, few have investigated how to effectively apply the solutions. This study proposes a Kubernetes based system applied in a smart factory providing effective operation and facility management. To develop the system, we employed a useful and popular open source project, and adopted deep learning based anomaly detection model for multi-sensor anomaly detection. This can be easily modified without interruption by changing the container image for inference. Through experiments, we have verified that the proposed method can provide system stability through nondisruptive maintenance, monitoring and non-disruptive updates for anomaly detection models.
스마트 팩토리는 설계, 개발, 제조 및 유통 등 생산과정 전반이 디지털 자동화 솔루션으로 이루어져 있으며, 내부 설비와 기계에 사물인터넷(IoT)을 설치해 공정 데이터를 실시간으로 수집하고 이를 분석해 스스로 제어할 수 있게 하는 지능형 공장이다. 스마트 팩토리의 장비들은 게임과 같이 가상의 캐릭터가 하나의 객체 단위로 구동되는 것이 아니라 수많은 하드웨어가 물리적으로 조합되어 연동한다. 즉, 특정한 공동의 목표를 위해 다수의 장치가 개별적인 행동을 동시다발적으로 수행해야 한다. 공정 데이터를 실시간으로 수집할 수 있는 스마트 팩토리의 장점을 활용하여, 일반적인 기계 학습이 아닌 강화 학습을 사용하면 미리 요구되는 훈련 데이터 없이 행동 제어를 할 수 있다. 하지만, 현실 세계에서는 물리적 마모, 시간적 문제 등으로 인해 수천만 번 이상의 반복 학습이 불가능하다. 따라서, 본 논문에서는 시뮬레이터를 활용해 스마트 팩토리 분야에서 복잡한 환경 중 하나인 이송 설비에 초점을 둔 그리드 분류 시스템을 개발하고 협력적 다중 에이전트 기반의 강화 학습을 설계하여 효율적인 행동 제어가 가능함을 입증한다.
International journal of advanced smart convergence
/
제13권2호
/
pp.265-275
/
2024
Smart factory is a remarkable development from traditional manufacturing systems to data-based smart manufacturing systems that can connect and process data continuously, collected from machines, production equipment to production and business processes, capable of supporting workers in making decisions or performing work automatically. Smart factory is the key and center of the fourth industrial revolution, combining improvements in traditional manufacturing activities with digital technology to help factories achieve greater efficiency, contributing to increased revenue and reduce operating costs for businesses. Besides, the importance of smart factories is to make production more quality, efficient, competitive and sustainable. Businesses in Vietnam are in the process of learning and applying smart factory models. However, the number of businesses applying the pine factory model is still limited due to many barriers and difficulties. Therefore, in this paper we conduct a survey to assess the needs and current situation of businesses in applying smart factories and propose some specific solutions to develop and promote application of smart factory model in Vietnamese businesses.
최근 사물인터넷은 인공지능의 발전, 연결된 기기의 증가와 클라우드 시스템의 높은 성능으로 인해 급격하게 발전하고 있다. 많은 기기와 센서로부터 생산되는 엄청난 양의 데이터들은 지능적 진단, 추천 서비스 뿐 아니라 스마트 관제 서비스와 같이 서비스 영역의 확대를 이끌고 있다. 엣지 컴퓨팅(Edge Computing)에 대한 연구는 높은 성능을 지닌 하드웨어를 바탕으로 작은 또 하나의 서버로써의 역할에 국한되어 연구되고 있다. 그러나 데이터를 분석하고 의미성에 따른 서비스를 구현하기 위해서는 범용적 서버로써의 역할보다는 도메인에 특화된 기능과 요구사항을 지녀야 한다. 스마트 팩토리에서의 엣지는 제한적 필터링, 사전 포맷팅을 포함하는 전처리와 그룹 컨텍스트 융합, 지역적 룰의 관리 등을 필요로 한다. 따라서 본 논문에서는 공장 특성에 맞는 효율성과 강건함 측면을 강조하는 요구사항들을 도출하고, 클라우드와 학습된 요소 공유 방법을 기반으로 하는 엣지 컴퓨팅의 구조를 제안하고자 한다. 이 엣지는 네트워크 자원 소모를 감소시키고 룰과 학습화된 모델의 변경을 쉽게 할 수 있도록 한다.
한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
/
pp.115-122
/
2003
This paper presents the development of a virtual forging factory framework. The technologies of virtual reality and relational database had been integrated in the developed framework using Microsoft $Windows^{(R)}$ programming as the main technique so as to emulate a physical forging factory. The developed virtual forging factory consists of forging cells and a forging cell is comprised of forging machine, forging die, and forging operations forming a forging production line. The technology of virtual reality had been successfully adopted in the production simulation of manufacturing such as CNC and robotics. However, the application in virtual forging factory seems to have not been studied yet. Potential application of a virtual forging factory can be beneficial to (1) computer aided instruction, (2) shorten the learning curve of a novice, (3) remote diagnosis and monitoring when remote monitoring and control technology and signal inspection is considered, (4) improve adverse forging environment when remote forging technology is applied, and (5) virtual reality application.
다양한 학습 모델이 발전하고 있는 지금, 학습을 통한 다양한 시도가 진행되고 있다. 이중 에너지 분야에서 많은 연구가 진행 중에 있으며, 대표적으로 BEMS(Building energy Management System)를 볼 수 있다. BEMS의 경우 건물을 기준으로 건물에서 생성되는 다양한 DATA를 이용하여, 에너지 예측 및 제어하는 다양한 기술이 발전해가고 있다. 하지만 FEMS(Factory Energy Management System)에 관련된 연구는 많이 발전하지 못했으며, 이는 BEMS와 FEAMS의 차이에서 비롯된다. 본 연구에서는 실제 공장에서 수집한 DATA를 기반으로 하여, 전력량 예측을 하였으며 예측을 위한 기술로 시계열 DATA 분석 방법인 LSTM 알고리즘을 이용하여 진행하였다.
본 논문에서는 Smart Factory의 자동 공정에서 결함의 분류를 실시간으로 시도하여 자동 공정 제어를 위한 결함 분류 딥러닝 기법을 제안하고, Pooling 종류에 따른 분류 성능을 비교한다. Smart Factory 구축에 있어서 CNN을 이용한 공정 제어를 통해 제품 생산에 있어서 생산량의 증가와 불량률의 감소를 이루어내는 것이 가능하다. Smart Factory는 자동화 공정이므로 결함의 분류 속도가 중요하지만, 생산량의 증가와 불량률의 감소를 위해서는 정확하게 결함의 종류를 분류하여 Smart Factory의 공정을 제어하는 것이 더욱 중요하다. 본 논문에서는 Pooling을 Max Pooling과 Averrage Pooling을 복합적으로 설정하였을 때 높은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.