• Title/Summary/Keyword: Learning diagnosis

Search Result 799, Processing Time 0.027 seconds

Fault Diagnosis Management Model using Machine Learning

  • Yang, Xitong;Lee, Jaeseung;Jung, Heokyung
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2019
  • Based on the concept of Industry 4.0, various sensors are attached to facilities and equipment to collect data in real time and diagnose faults using analyzing techniques. Diagnostic technology continuously monitors faults or performance degradation of facilities and equipment in operation and diagnoses abnormal symptoms to ensure safety and availability through maintenance before failure occurs. In this paper, we propose a model to analyze the data and diagnose the state or failure using machine learning. The diagnosis model is based on a support vector machine (SVM)-based diagnosis model and a self-learning one-class SVM-based diagnostic model. In the future, it is expected that this model can be applied to facilities used in the entire industry by applying the actual data to the diagnostic model proposed in this paper, conducting the experiment, and verifying it through the model performance evaluation index.

A Study on Jaundice Computer-aided Diagnosis Algorithm using Scleral Color based Machine Learning

  • Jeong, Jin-Gyo;Lee, Myung-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.131-136
    • /
    • 2018
  • This paper proposes a computer-aided diagnostic algorithm in a non-invasive way. Currently, clinical diagnosis of jaundice is performed through blood sampling. Unlike the old methods, the non-invasive method will enable parents to measure newborns' jaundice by only using their mobile phones. The proposed algorithm enables high accuracy and quick diagnosis through machine learning. In here, we used the SVM model of machine learning that learned the feature extracted through image preprocessing and we used the international jaundice research data as the test data set. As a result of applying our developed algorithm, it took about 5 seconds to diagnose jaundice and it showed a 93.4% prediction accuracy. The software is real-time diagnosed and it minimizes the infant's pain by non-invasive method and parents can easily and temporarily diagnose newborns' jaundice. In the future, we aim to use the jaundice photograph of the newborn babies' data as our test data set for more accurate results.

Diagnostic evaluation and educational intervention for learning disabilities (학습장애의 진단 평가와 교육학적 개입)

  • Hong, Hyeonmi
    • Journal of Medicine and Life Science
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Learning disabilities (LD), also known as learning disorders, refers to cases in which an individual experiences lower academic ability as compared to the normal range of intelligence, visual or hearing impairment, or an inability to peform learning. Children and adolescents with learning disabilities often have emotional or behavioral problems or co-existing conditions, including depression, anxiety disorders, difficulties with peer relationships, family conflicts, and low self-esteem. In most cases, attention deficit and hyperactivity disorder coexists. As learning disabilities have the characteristics of a difficult heterogeneous disease group that cannot be attributed to a single root cause, they are diagnosed based on an interdisciplinary approach through medicine and education, such as mental health medicine, education, psychology, special education, and neurology. In addition, for the accurate diagnosis and treatment of learning disabilities, the diagnosis, prescription, treatment, and educational intervention should be conducted in cooperation with doctors, teachers, and psychologists. The treatment of learning disabilities requires a multimodal approach, including medical and educational intervention. It is suggested that educational interventions such as the Individualized Education Plan (IEP) and the Response to Invention (RTI) should be implemented.

On-line Diagnosis System with Learning Bayesian Networks for fsEBPR

  • Cheon, Seong-Pyo;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.279-284
    • /
    • 2007
  • Nowadays, due to development of automatic control devices and various sensors, one operator can freely handle several remote plants and processes. Automatic diagnosis and warning systems have been adopted in various fields, in order to prepare an operator's absence for patrolling plants. In this paper, a Bayesian networks based on-line diagnosis system is proposed for a wastewater treatment process. Especially, the suggested system is included learning structure, which can continuosly update conditional probabilities in the networks. To evaluate performance of proposed model, we made a lab-scale five-stage step-feed enhanced biological phosphorous removal process plant and applied on-line diagnosis system to this plant in the summer.

Transfer Learning-Based Vibration Fault Diagnosis for Ball Bearing (전이학습을 이용한 볼베어링의 진동진단)

  • Subin Hong;Youngdae Lee;Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.845-850
    • /
    • 2023
  • In this paper, we propose a method for diagnosing ball bearing vibration using transfer learning. STFT, which can analyze vibration signals in time-frequency, was used as input to CNN to diagnose failures. In order to rapidly learn CNN-based deep artificial neural networks and improve diagnostic performance, we proposed a transfer learning-based deep learning learning technique. For transfer learning, the feature extractor and classifier were selectively learned using a VGG-based image classification model, the data set for learning was publicly available ball bearing vibration data provided by Case Western Reserve University, and performance was evaluated by comparing the proposed method with the existing CNN model. Experimental results not only prove that transfer learning is useful for condition diagnosis in ball bearing vibration data, but also allow other industries to use transfer learning to improve condition diagnosis.

Donguibogam-Based Pattern Diagnosis Using Natural Language Processing and Machine Learning (자연어 처리 및 기계학습을 통한 동의보감 기반 한의변증진단 기술 개발)

  • Lee, Seung Hyeon;Jang, Dong Pyo;Sung, Kang Kyung
    • The Journal of Korean Medicine
    • /
    • v.41 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • Objectives: This paper aims to investigate the Donguibogam-based pattern diagnosis by applying natural language processing and machine learning. Methods: A database has been constructed by gathering symptoms and pattern diagnosis from Donguibogam. The symptom sentences were tokenized with nouns, verbs, and adjectives with natural language processing tool. To apply symptom sentences into machine learning, Word2Vec model has been established for converting words into numeric vectors. Using the pair of symptom's vector and pattern diagnosis, a pattern prediction model has been trained through Logistic Regression. Results: The Word2Vec model's maximum performance was obtained by optimizing Word2Vec's primary parameters -the number of iterations, the vector's dimensions, and window size. The obtained pattern diagnosis regression model showed 75% (chance level 16.7%) accuracy for the prediction of Six-Qi pattern diagnosis. Conclusions: In this study, we developed pattern diagnosis prediction model based on the symptom and pattern diagnosis from Donguibogam. The prediction accuracy could be increased by the collection of data through future expansions of oriental medicine classics.

Deep learning for stage prediction in neuroblastoma using gene expression data

  • Park, Aron;Nam, Seungyoon
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.30.1-30.4
    • /
    • 2019
  • Neuroblastoma is a major cause of cancer death in early childhood, and its timely and correct diagnosis is critical. Gene expression datasets have recently been considered as a powerful tool for cancer diagnosis and subtype classification. However, no attempts have yet been made to apply deep learning using gene expression to neuroblastoma classification, although deep learning has been applied to cancer diagnosis using image data. Taking the International Neuroblastoma Staging System stages as multiple classes, we designed a deep neural network using the gene expression patterns and stages of neuroblastoma patients. Despite a small patient population (n = 280), stage 1 and 4 patients were well distinguished. If it is possible to replicate this approach in a larger population, deep learning could play an important role in neuroblastoma staging.

A Study on the Prediction Diagnosis System Improvement by Error Terms and Learning Methodologies Application (오차항과 러닝 기법을 활용한 예측진단 시스템 개선 방안 연구)

  • Kim, Myung Joon;Park, Youngho;Kim, Tai Kyoo;Jung, Jae-Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.783-793
    • /
    • 2019
  • Purpose: The purpose of this study is to apply the machine and deep learning methodology on error terms which are continuously auto-generated on the sensors with specific time period and prove the improvement effects of power generator prediction diagnosis system by comparing detection ability. Methods: The SVM(Support Vector Machine) and MLP(Multi Layer Perception) learning procedures were applied for predicting the target values and sequentially producing the error terms for confirming the detection improvement effects of suggested application. For checking the effectiveness of suggested procedures, several detection methodologies such as Cusum and EWMA were used for the comparison. Results: The statistical analysis result shows that without noticing the sequential trivial changes on current diagnosis system, suggested approach based on the error term diagnosis is sensing the changes in the very early stages. Conclusion: Using pattern of error terms as a diagnosis tool for the safety control process with SVM and MLP learning procedure, unusual symptoms could be detected earlier than current prediction system. By combining the suggested error term management methodology with current process seems to be meaningful for sustainable safety condition by early detecting the symptoms.

Development of a Nursing Diagnosis System Using a Neural Network Model (인공지능을 도입한 간호정보시스템개발)

  • 이은옥;송미순;김명기;박현애
    • Journal of Korean Academy of Nursing
    • /
    • v.26 no.2
    • /
    • pp.281-289
    • /
    • 1996
  • Neural networks have recently attracted considerable attention in the field of classification and other areas. The purpose of this study was to demonstrate an experiment using back-propagation neural network model applied to nursing diagnosis. The network's structure has three layers ; one input layer for representing signs and symptoms and one output layer for nursing diagnosis as well as one hidden layer. The first prototype of a nursing diagnosis system for patients with stomach cancer was developed with 254 nodes for the input layer and 20 nodes for the output layer of 20 nursing diagnoses, by utilizing learning data set collected from 118 patients with stomach cancer. It showed a hitting ratio of .93 when the model was developed with 20,000 times of learning, 6 nodes of hidden layer, 0.5 of momentum and 0.5 of learning coefficient. The system was primarily designed to be an aid in the clinical reasoning process. It was intended to simplify the use of nursing diagnoses for clinical practitioners. In order to validate the developed model, a set of test data from 20 patients with stomach cancer was applied to the diagnosis system. The data for 17 patients were concurrent with the result produced from the nursing diagnosis system which shows the hitting ratio of 85%. Future research is needed to develop a system with more nursing diagnoses and an evaluation process, and to expand the system to be applicable to other groups of patients.

  • PDF

A Review of Computer Vision Methods for Purpose on Computer-Aided Diagnosis

  • Song, Hyewon;Nguyen, Anh-Duc;Gong, Myoungsik;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In the field of Radiology, the Computer Aided Diagnosis is the technology which gives valuable information for surgical purpose. For its importance, several computer vison methods are processed to obtain useful information of images acquired from the imaging devices such as X-ray, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). These methods, called pattern recognition, extract features from images and feed them to some machine learning algorithm to find out meaningful patterns. Then the learned machine is then used for exploring patterns from unseen images. The radiologist can therefore easily find the information used for surgical planning or diagnosis of a patient through the Computer Aided Diagnosis. In this paper, we present a review on three widely-used methods applied to Computer Aided Diagnosis. The first one is the image processing methods which enhance meaningful information such as edge and remove the noise. Based on the improved image quality, we explain the second method called segmentation which separates the image into a set of regions. The separated regions such as bone, tissue, organs are then delivered to machine learning algorithms to extract representative information. We expect that this paper gives readers basic knowledges of the Computer Aided Diagnosis and intuition about computer vision methods applied in this area.