• Title/Summary/Keyword: Learning characteristic

Search Result 586, Processing Time 0.031 seconds

System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network (지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명)

  • Chong, K.T.;Hong, D.P.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

AI Performance Based On Learning-Data Labeling Accuracy (인공지능 학습데이터 라벨링 정확도에 따른 인공지능 성능)

  • Ji-Hoon Lee;Jieun Shin
    • Journal of Industrial Convergence
    • /
    • v.22 no.1
    • /
    • pp.177-183
    • /
    • 2024
  • The study investigates the impact of data quality on the performance of artificial intelligence (AI). To this end, the impact of labeling error levels on the performance of artificial intelligence was compared and analyzed through simulation, taking into account the similarity of data features and the imbalance of class composition. As a result, data with high similarity between characteristic variables were found to be more sensitive to labeling accuracy than data with low similarity between characteristic variables. It was observed that artificial intelligence accuracy tended to decrease rapidly as class imbalance increased. This will serve as the fundamental data for evaluating the quality criteria and conducting related research on artificial intelligence learning data.

Structural Relationship among Satisfaction, Learning Attitude, Educational Contents Characteristic of Agricultural Education Program Based on Field Training (현장실습중심 농업교육프로그램의 교육내용적 특성, 학습태도, 만족도 간의 구조 관계 분석)

  • Cha, Seung Bong;Nam, Min Woo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.22 no.4
    • /
    • pp.435-444
    • /
    • 2015
  • This study analyzes the structural relationship between attitudes and learning more properties in agricultural college education programs. The results were as follows. first, The model was accepted according to the some goodness of fit statistics such as ${\chi}^2$(84.28, p>.05), RMR(.036), RMSEA(.041), GFI(.927), NFI(.945), CFI(.985), IFI(985). seconds, Learning attitude(.31) and content validity(.47) in the structural relationship between variables is a direct impact on satisfaction. thirds, Perceived Usefulness(.34) and Content validity(.36) has direct effect of factor on learning attitude. Finally Perceived Usefulness was found to direct effect all Content validity(.64) and easy of use(.27). Finally, considering of duties required in the agriculture. increase the satisfaction of learners should have provide field learning based Learning materials, practices, instructional media. As a result, it will enhance the performance of field learning agricultural education programs.

Behavior Learning and Evolution of Swarm Robot System using Q-learning and Cascade SVM (Q-learning과 Cascade SVM을 이용한 군집로봇의 행동학습 및 진화)

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.279-284
    • /
    • 2009
  • In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, reinforcement learning method using many SVM based on structural risk minimization and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. By distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning that basis of Cascade SVM is adopted in this paper.

Learning Behavior Analysis of Bayesian Algorithm Under Class Imbalance Problems (클래스 불균형 문제에서 베이지안 알고리즘의 학습 행위 분석)

  • Hwang, Doo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.179-186
    • /
    • 2008
  • In this paper we analyse the effects of Bayesian algorithm in teaming class imbalance problems and compare the performance evaluation methods. The teaming performance of the Bayesian algorithm is evaluated over the class imbalance problems generated by priori data distribution, imbalance data rate and discrimination complexity. The experimental results are calculated by the AUC(Area Under the Curve) values of both ROC(Receiver Operator Characteristic) and PR(Precision-Recall) evaluation measures and compared according to imbalance data rate and discrimination complexity. In comparison and analysis, the Bayesian algorithm suffers from the imbalance rate, as the same result in the reported researches, and the data overlapping caused by discrimination complexity is the another factor that hampers the learning performance. As the discrimination complexity and class imbalance rate of the problems increase, the learning performance of the AUC of a PR measure is much more variant than that of the AUC of a ROC measure. But the performances of both measures are similar with the low discrimination complexity and class imbalance rate of the problems. The experimental results show 4hat the AUC of a PR measure is more proper in evaluating the learning of class imbalance problem and furthermore gets the benefit in designing the optimal learning model considering a misclassification cost.

Study on the Academic Competency Assessment of Herbology Test using Rasch Model (라쉬 모델을 사용한 본초학 시험의 학업역량 분석 연구)

  • Chae, Han;Lee, Soo Jin;Han, Chang-ho;Cho, Young Il;Kim, Hyungwoo
    • The Journal of Korean Medicine
    • /
    • v.43 no.2
    • /
    • pp.27-41
    • /
    • 2022
  • Objectives: There should be an objective analysis on the academic competency for incorporating Computer-based Test (CBT) in the education of traditional Korean medicine (TKM). However, the Item Response Theory (IRT) for analyzing latent competency has not been introduced for its difficulty in calculation, interpretation and utilization. Methods: The current study analyzed responses of 390 students of 8 years to the herbology test with 14 items by utilizing Rasch model, and the characteristics of test and items were evaluated by using characteristic curve, information curve, difficulty, academic competency, and test score. The academic competency of the students across gender and years were presented with scale characteristic curve, Kernel density map, and Wright map, and examined based on T-test and ANOVA. Results: The estimated item, test, and ability parameters based on Rasch model provided reliable information on academic competency, and organized insights on students, test and items not available with test score calculated by the summation of item scores. The test showed acceptable validity for analyzing academic competency, but some of items revealed difficulty parameters to be modified with Wright map. The gender difference was not distinctive, however the differences between test years were obvious with Kernel density map. Conclusion: The current study analyzed the responses in the herbology test for measuring academic competency in the education of TKM using Rasch model, and structured analysis for competency-based Teaching in the e-learning era was suggested. It would provide the foundation for the learning analytics essential for self-directed learning and competency adaptive learning in TKM.

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

A Study of the Structural Relationship of Corporate e-Learning in Quality, Users' Learning Characteristics and Customer Orientation in Hotel Industry (호텔 e-Learning의 품질 및 사용자 학습특성과 고객지향성과의 구조적 관계에 관한 연구)

  • Ji, Yun Ho;Park, Tae Soo;Kim, Minsun;Moon, Yun Ji
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.575-577
    • /
    • 2013
  • The research was aimed at the hotel industry's employees in order to test the efficiency of e-Learning, which is emerging as the alternative training system to the conventional one. The independent variables are the quality of e-Learning, including the qualities of the system, contents, and service of e-Learning, and the learning characteristic factor, including the quality factor of e-Learning, the self-efficacy of the user, learning motivation, and the flow of learning. Furthermore, the intervening variables are its perceived usefulness and the satisfaction factor of the user known as the so-called utility of e-Learning, continuous intention to use in terms of efficaciousness, and the spread of education and training. The dependent variable is customer orientation, known as the ultimate efficaciousness of corporate e-Learning.

  • PDF

Effects of Learning Expectation and Perceived Knowledge Sharing on User Satisfaction and IS Continuance (학습기대와 지식공유 지각이 사용자 만족과 지속사용에 미치는 영향)

  • Kim, In Chan;Baek, Seung Nyoung
    • The Journal of Information Systems
    • /
    • v.28 no.4
    • /
    • pp.377-401
    • /
    • 2019
  • Purpose The purpose of this study is to investigate the effects of learning expectation and perceived knowledge sharing on user satisfaction and IS continuance in the Korean Army which is currently using the Regiments' Information System to help their Integrated Administration Management. Based on both the Information System(IS) Continuance Model and IS Success Model, this study also examine the role of system quality on user satisfaction. We develop a research model(structural equation model) and its hypotheses that learning expectation, perceived knowledge sharing, and system quality increase users' satisfaction, which leads to IS continuance. The effect of learning expectation on perceived knowledge sharing is also hypothesized. Design/methodology/approach Online Survey using e-mails was administered to test our research model and associated hypotheses. Among the 360 e-mail letters including our survey questionnaire, 285 responses were collected via e-mails. Meaningful 225 cases were analyzed for our study. SPSS Statistics 24.0 and SmartPLS 3.0 were used to analyze both measuremant test and hyotheses test by using the data set. Findings Survey results show that learning expectation(confirmation variable), learning expectation, perceived knowledge sharing(a perceived usefulness variable), and system quality(a system characteristic) each increases user satisfaction, which leads to IS continuance, under the control of the effect of habit to use information systems. Learning expectation also has a positive influence on perceived knowledge sharing. Theoretical and practical implications are presented.

A Study on the Mediating Effect of Interaction among Learners in a Web Based Collaboration Learning Environment (웹 기반 협력학습 환경에서 학습자간 상호작용의 매개효과 관한 연구)

  • Lee, Dong-Hoon;Lee, Sang-Kon
    • Journal of Information Technology Services
    • /
    • v.12 no.2
    • /
    • pp.195-214
    • /
    • 2013
  • The purpose of this study is to verify the mediating effect of interaction among learners in a Web Based Collaboration Learning (WBCL) environment. 254 Korean college students served as test subjects and during the 4 weeks of research period, they studied the Test of English for International Communication (TOEIC) in a web-based collaborative learning system. The interaction between learners was looked into by categorizing the concept into task oriented information sharing activities and relationship oriented communication activities and analyzing the causal relationship between the two activities. Learning performances were measured in individual level. The results are as follows. First, task oriented information sharing activities effect positively on relationship oriented information sharing activities. Second, the managerial characteristics of WBCL had a positive effect on interaction between learners but the systematic characteristics had partial influence on interaction between learners. Third, the interaction between learners completely interconnects the managerial characteristics of WBCL and learning performance but partially interconnects the systematic characteristic of WBCL and learning performance. In conclusion, this study implies that managerial and systematic characteristics of WBCL should be considered on the preferential basis for the WBCL to become successful and interactive activities such as information sharing and communication should be encouraged to be active from a small-size WBCL perspective.