• 제목/요약/키워드: Learning behavior

검색결과 1,450건 처리시간 0.024초

유튜브 데이터를 활용한 20대 대선 여론분석 (Analysis of public opinion in the 20th presidential election using YouTube data)

  • 강은경;양선욱;권지윤;양성병
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.161-183
    • /
    • 2022
  • 여론조사는 유권자들의 투표행위를 예측하고, 그 행위에 영향을 준다는 점에서 선거운동의 강력한 수단이자, 언론의 가장 중요한 기사거리로 자리잡고 있다. 하지만, 여론조사가 활발할수록 후보자들의 공약과 정책을 검증하기 보다 당선 가능성이나 지지도에 관한 조사만 반복적으로 실시하는 등 선거 캠페인에 관한 효과 측정에서 유권자들의 마음을 제대로 반영하지 못하는 경우가 많다. 여론조사의 선거 결과에 대한 부실한 예측이 언론사의 권위를 실추시켰다 하더라도, 어느 후보가 최종 승리할지에 대해 인간의 본능적인 궁금증을 풀어줄 명백한 대안이 없기 때문에 사람들은 여론조사에 대한 관심을 쉽게 놓지 못한다. 이에, 온라인 빅데이터를 통해 인사이트를 발굴하는 환경을 제공하는 썸트렌드의 '유튜브 분석' 기능을 활용하여 20대 대선에 대한 여론을 회고적으로 파악해 보고자 한다. 본 연구를 통해 간단한 유튜브 데이터 분석 결과만으로도 실제 여론(혹은 여론조사 결과)에 근접한 결과를 쉽게 도출하고, 성능이 좋은 여론 예측모형을 구축할 수 있음을 확인하였다.

중등과학교사의 유튜버 경험과 정체성에 대한 연구 -푸코의 헤테로토피아 개념을 중심으로- (A Study on the Secondary Science Teachers' YouTuber Experience and Identity: Focusing on Foucault's Concept of Heterotopia)

  • 신세인;이준기
    • 한국과학교육학회지
    • /
    • 제42권6호
    • /
    • pp.579-595
    • /
    • 2022
  • 이 연구는 유튜브라는 공간에서 새롭게 교육활동을 하는 중등과학교사들에 대한 질적사례연구이다. 특히 이 연구는 생활세계 혹은 현실공간의 규범과 제약에서 벗어나, 다양한 이상향이 반영되어 사적 자유나 일탈을 가능케 해주는 공간을 의미하는 푸코의 '헤테로토피아'라는 개념을 중심으로 이 사례를 해석하고자 했다. 연구에는 최근 자발적으로 유튜브 플랫폼에 개인 채널을 개설하고, 과학 학습 관련 영상을 활발하게 올리는 현직 중등과학교사 5인이 참여했다. 5인의 중등과학교사들의 경험에 대한 이해를 위해 개별적으로 반구조적 심층면담을 통해 자료를 수집하였으며, 질적 사례 연구 기법을 활용하여 수집된 자료를 분석하였다. 연구의 타당한 해석을 위하여 참여자들이 제작한 영상 콘텐츠, 이들이 직접 제작한 교사연수자료 및 교수학습자료를 참조하였다. 연구 결과, '자신만의 고유한 교육활동에 대한 갈망', '확장된 교실 공간으로서의 유튜브', '교실의 장벽 너머로 확장된 관계망', '인정욕구의 충족과 유튜버로서의 정체성 경험', '전통적 교육공간과 유튜브 공간 사이의 긴장' '장인으로 거듭나기', '교사-유튜버로서 자신만의 방향 찾기'라는 크게 일곱 가지의 주제가 도출되었다. 이를 통해 기존의 중등학교와 교실 안에서 한정되던 중등과학교사의 정체성과 욕구가 유튜브라는 새로운 공간에서 확장되는 현상을 확인할 수 있었다. 또한 유튜브는 과학교사들이 자신들만의 이상을 실현하고 즐거움을 느껴 볼 수 있는 공간이며, 이 공간 내에서의 행동을 일상 공간 속의 규범과 잣대로만 규제하는 것은 오히려 이들의 건전한 정체성 형성과 성장을 가로막는 일이 될 수 있음을 제언하였다.

텍스트마이닝을 활용한 아동, 청소년 대상 소비관련 연구 키워드 분석 (Keyword Analysis of Research on Consumption of Children and Adolescents Using Text Mining)

  • 진현정
    • 한국가정과교육학회지
    • /
    • 제33권4호
    • /
    • pp.1-13
    • /
    • 2021
  • 본 연구는 텍스트마이닝 기법으로 최근 20년간 아동, 청소년 대상 소비 관련 연구의 주요어를 분석하여 소비 관련 연구의 동향을 파악하고자 하였다. 이를 위하여 KCI 등재/등재후보 학술지에 게재된 아동, 청소년의 소비관련 연구 869편의 주요어를 분석하였다. 빈도분석 결과 가장 빈도가 높은 주요어는 청소년, 청소년소비자, 소비자교육, 과시소비, 소비행동, 캐릭터, 경제교육, 윤리적소비 순으로 나타났다. 5년 단위로 주요어의 빈도를 분석한 결과, 2006년~2010년에는 소비자교육의 빈도가 월등하게 높아 이 시기에 소비자교육에 관한 연구가 많이 이루어졌음을 확인할 수 있었다. 2011년 이후 윤리적소비에 관한 연구가 활발해졌으며, 최근 5년 동안은 두드러지는 주요어가 없는 대신 다양한 주제로 연구가 이루어졌음을 알 수 있었다. TF-IDF 기준으로 주요어를 살펴보면 2001년~2005년 사이에는 환경과 인터넷 관련 단어가 주요 키워드였다. 2006년~2010년에는 미디어이용, 광고 교육, 인터넷아이템, 2011년~2015년에는 공정무역, 녹색성장, 녹색소비, 북한이탈청소년, 소셜미디어, 2016~2020년에는 텍스트마이닝, 지속가능발전교육, 메이커교육, 2015개정교육과정이 중요한 용어로 등장하였다. 토픽모델링 결과, 소비자교육, 대중매체/또래문화, 합리적 소비, 한류/문화산업, 소비자역량, 경제교육, 교수학습방법, 친환경/윤리적소비의 8개의 토픽이 도출되었다. 동시 출현 빈도를 활용한 네트워크 분석을 통해 아동, 청소년 관련 소비 연구에서 과시소비와 소비자교육이 중요한 연구주제임을 알 수 있었다.

자본시장 IT시스템 효율적 용량계획 모델: 심리지수 활용을 중심으로 (Effective Capacity Planning of Capital Market IT System: Reflecting Sentiment Index)

  • 이국형;김미예;박재영;김범수
    • 지식경영연구
    • /
    • 제23권1호
    • /
    • pp.89-109
    • /
    • 2022
  • 최근 COVID-19, 동학개미운동 등 투자환경의 변화로 시스템 처리 허용 수준을 상회하는 트랜잭션이 발생하고 이로 인해 전산장애가 자본시장에서 빈번하게 나타나고 있다. 자본시장 IT시스템들은 장애 영향도가 매우 큰 시스템들로서, 2020년에 예측하지 못한 큰 규모의 트랜잭션이 상당한 기간 유입되어 전산장애가 급증하였다. 다수의 기업들이 높은 수준의 IT시스템 용량계획 정책을 유지하고 있던 상황임에도 불구하고, 이를 상회하는 트랜잭션이 유입된 것은 용량계획에 대한 새로운 접근 방법이 필요함을 시사하고 있다. 이에 본 연구는 다양한 머신러닝 기법을 활용하여 자본시장 IT시스템 용량계획 모델들을 개발하고 성능을 비교 분석한다. 또한, 동학개미운동과 같이 예측하기 힘든 투자자의 행동을 반영할 수 있는 심리지수를 예측에 활용함으로써 용량계획 모델의 성능을 높인다. COVID-19 기간을 포함한 실증데이터를 이용하여 본 연구에서 개발한 용량계획 모델은 실무에서 활용 가능한 수준의 높은 성능과 안정성을 가질 수 있다. 본 연구는 기업의 비용 효율성과 IT시스템 용량 변경에 수반되는 운영상의 제약을 모두 고려한 최적의 파라미터를 제시하였는데, 이것은 자본시장 도메인에서 유용하게 사용될 수 있다. 또한, 본 연구는 투자자의 심리를 반영하는 심리지수가 IT 시스템 용량계획에 중요한 예측요인이 될 수 있는 것을 입증함으로써, 심리지수가 다양한 수요예측에 적극적으로 활용될 수 있음을 보여준다.

세계시민교육 역량 제고를 위한 교육대학원 음악교육전공 교과 운영 효과 조사 연구: 예비음악교사의 다문화 교육태도 및 교수효능감을 중심으로 (The Analysis of Effects of a Music Teacher Training Program for Global Citizenship Education)

  • 정주연;신지혜
    • 인간행동과 음악연구
    • /
    • 제20권1호
    • /
    • pp.47-74
    • /
    • 2023
  • 본 연구는 A 교육대학원에 재학 중인 15명의 예비 음악 교사들을 대상으로 세계시민교육 역량 제고를 위한 강좌를 개발 및 실현하고, 그 효과성을 탐색하였다. 강좌는 세계시민교육의 여러 주제 중 다양성과 포용을 바탕으로 한 다문화 교육에 중점을 두고, 관련 이론 탐색을 통해 음악의 사회·문화적 산물로서의 본질을 이해하고, 참여자 주도로 중학생을 위한 수업 방안을 개발 및 실현하는 과정으로 구성되었다. 사전/사후 검사 결과 강좌 전후로 첫째, 예비음악교사들의 다문화 교육 태도가 향상되었고, 특별히 교사의 역할에 대한 태도가 큰 폭으로 증가하였다. 이는 본 연구의 강좌가 예비교사들로 하여금 다양성 및 다문화 교육과 관련한 인식과 편견을 반성하고 음악 교사로서의 역할을 고민하도록 도왔기 때문으로 여겨진다. 둘째, 다문화 교수 효능감의 향상 중 다문화 상황에서의 교육 및 다문화 교육 교수 효능감 향상이 두드러졌는데, 이는 성찰지를 통해 본 강좌가 음악의 사회·문화적 산물로서와 상징적 표현 가능성의 가치를 깨닫도록 한 영향임을 알 수 있었다. 또한, 강좌는 실질적인 삶의 문제들을 풀어나가는 변혁적 교수법의 필요성 인식과 실천, 음악에 대한 다각적인 이해와 탐색을 바탕으로 한 세계시민교육의 여러 주제들의 접근을 도와 예비음악교사들의 세계시민교육 역량을 발전시키는데 도움을 주었다.

2015 및 2022 개정 초등학교 과학과 교육과정에 대한 비교 - 네트워크 분석을 중심으로 - (Comparing the 2015 with the 2022 Revised Primary Science Curriculum Based on Network Analysis)

  • 조헌국
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제42권1호
    • /
    • pp.178-193
    • /
    • 2023
  • 본 연구는 2015 및 2022 개정 과학과 교육과정 중 초등학교급과 관련된 성취기준을 중심으로 네트워크 분석을 통해 어떠한 변화 양상을 갖는지 비교하고 이를 토대로 초등학교 과학 교수학습을 위한 시사점을 제공하는 것을 목적으로 하였다. 이에 따라 본 연구에서는 2015 및 2022 개정 초등 과학과 교육과 정의 성취기준을 추출하여 성취기준 영역 변화에 따른 차이를 살펴보고, 각 영역별 중심성 지수를 중심으로 한 비교, 커뮤니티 탐지 기법을 활용한 군집 분석을 통해 어떠한 변화가 있는지 분석하였다. 연구 결과, 2015 개정 과학과 교육과정에 비해 전체 성취기준은 10% 가량 감소하였으나, 성취 기준의 길이나 주요어의 빈도는 오히려 증가하였으며, 관찰이나 조사, 설명 외에도 공유, 실천, 설계 등 디지털 도구활용 및 협동학습과 관련된 과정·기능적 측면이 강조되었다. 그러나 이러한 변화는 과학의 각 영역에 따라 서로 다른 차이를 보임을 알 수 있었다. 또한 군집 분석 결과 대체적으로 군집의 숫자나 관련 개념이나 용어의 영역은 유사하였으나, 과정·기능 및 가치·태도와 관련된 주요어를 중심으로 수행 방식 등에 변화가 나타났음을 확인할 수 있었다. 이러한 연구 결과를 토대로 본 연구에서는 새로운 교육과정의 적용 시 고려해야 할 점들을 시사점으로 제시하였다.

블록체인 기반의 도서관 서비스 도입 및 활용방안에 관한 연구 (A Study on the Introduction of Library Services Based on Blockchain)

  • 노지윤;노영희
    • 한국비블리아학회지
    • /
    • 제33권1호
    • /
    • pp.371-401
    • /
    • 2022
  • 블록체인이 위·변조가 불가능한 분산 환경에 정보를 저장하는 것을 의미한다면, 이는 사서들이 권위 있는 정보를 수집하고 보존하며 공유하는 일과 유사하다고 언급된다. 과잉정보 속 도서관이 신뢰할 수 있는 정보를 수집·제공하고, 나아가 도서관 내외부의 업무효율성 증대, 협력 네트워크 강화 등을 모색하기 위한 방안으로서 본 연구에서는 블록체인 기술을 살펴보았다. 본 연구에서는 문헌조사와 타 분야의 사례연구를 바탕으로 도서관계에서 블록체인 기술을 활용할 수 있는 다양한 방안을 제안하고자 하였다. 이를 위해서 본 연구에서는 첫째, 블록체인 활용분야와 사례를 분석하여 도서관 분야의 블록체인 활용 가능성 및 가치를 확인하고, 이를 토대로 12가지 활용방안을 제안하였다. 도서관 업무 분야에서는 디지털 신원 기반의 도서관 통합 인증 서비스, 도서관 유·무형 자산 이동의 모니터링 기능, 도서관 이용자 의견수렴 기능, 블록체인 기반 도서관 채용·인사시스템, 블록체인 거버넌스 기반 도서관 운영 체계 및 네트워크 구축, 도서관 내 IoT 디바이스 및 센서 데이터 관리 기능을 제안하였다. 정보서비스 측면에서는 블록체인 기반의 출판·거래 플랫폼 참여, 디지털 콘텐츠 저작권 보호 및 관리 기능, 이용자 행동 분석 기반 맞춤형 서비스, 도서관의 통합 온라인 교육 플랫폼, 공유플랫폼 기능, P2P 기반의 정보플랫폼 등을 제안하였다.

펠든크라이스 기법®을 적용한 신체 움직임 프로그램 설계 - 파킨슨병 환자를 중심으로 (Design of Body Movement Program with the Application of Feldenkrais Method® - Foucing on Parkinson's Disease)

  • 박소정
    • 트랜스-
    • /
    • 제14권
    • /
    • pp.35-63
    • /
    • 2023
  • 파킨슨병은 신체 움직임을 담당하는 도파민의 부족으로 신체 기능의 장애로 기본적인 일상생활까지 영향을 미치는 퇴행성 신경질환이다. 현재 의술로는 완치가 힘들어 병의 지연과 예방 차원으로 운동치료에 관심을 모으고 있다. 이에 본 연구에서는 펠든크라이스 기법®을 파킨슨병 환자에게 적용하여 심신의 상태를 스스로 돌볼 수 있는 신체 움직임 프로그램을 설계하고 보급하는데 목적을 갖는다. 펠든크라이스 기법®은 신체 움직임을 이용한 심신 자각 학습 방법으로 신경가소성의 기능인 뇌와 행동을 연결하여 신경계를 재교육하는 방법론이다. 본 연구에서는 연구자가 개발하고 검증한 신체 움직임 프로그램을 펠든크라이스 기법®의 자각(⾃覺)에 초점을 맞추어 수정·보완하였다. 24회기의 신체 움직임 프로그램은 파킨슨병 환자의 자기관리능력을 향상하기 위해 5단계로 구성하였다. 첫 번째 단계는 자기 인식이고 두 번째 단계는 자기 관찰이다. 셋째, 자기조직화, 넷째, 자기 통제. 그리고 다섯 번째 단계는 자기 관리다. 전반적인 변화는 자신의 상태를 인식하고 내적 감각과 외적 환경의 변화를 감지하는 능력을 향상시킨다. 결론적으로 파킨슨병 환자에게 심신 기능의 향상과 자기관리가 가능한 신체 움직임 프로그램을 펠든크라이스 기법을 적용하여 설계하였다. 앞으로 설계된 프로그램을 현장 적용 가능성 여부는 후속과제로 남긴다. 나아가 노년층의 웰니스를 위한 움직임의 참고자료로 메타버스를 적용한 과학분야와의 융합적 협력을 통해 보다 폭넓게 확산될 수 있도록 체계적 구조를 구축할 필요가 있다.

MEC 산업용 IoT 환경에서 경매 이론과 강화 학습 기반의 하이브리드 오프로딩 기법 (Hybrid Offloading Technique Based on Auction Theory and Reinforcement Learning in MEC Industrial IoT Environment)

  • 배현지;김승욱
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권9호
    • /
    • pp.263-272
    • /
    • 2023
  • 산업용 IoT는 대규모 연결을 통해 데이터 수집, 교환, 분석과 함께 산업 분야의 생산 효율성 개선에 중요한 요소이다. 그러나 최근 산업용 IoT의 확산으로 인해 트래픽이 폭발적으로 증가함에 따라 트래픽을 효율적으로 처리해줄 할당 기법이 필요하다. 본 논문에서는 산업용 IoT 환경에서 성공적인 태스크 처리율을 높이기 위한 2단계 태스크 오프로딩 결정 기법을 제안한다. 또한, 컴퓨팅 집약적인 태스크를 셀룰러 링크를 통해 이동 엣지 컴퓨팅(Mobile Edge Computing: MEC) 서버로 오프로드 하거나 D2D(Device to Device) 링크를 통해 근처의 산업용 IoT 장치로 오프로드 할 수 있는 하이브리드 오프로딩(Hybrid-offloading) 시스템을 고려한다. 먼저 1단계는 태스크 오프로딩에 참여하는 기기들이 이기적으로 행동하여 태스크 처리율 향상에 어려움을 주는 것을 방지하기 위해 인센티브 메커니즘을 설계한다. 메커니즘 디자인 중 McAfee's 메커니즘을 사용하여 태스크를 처리해주는 기기들의 이기적인 행동을 제어하고 전체 시스템 처리율을 높일 수 있도록 한다. 그 후 2단계에서는 산업용 IoT 장치의 불규칙한 움직임을 고려하여 비정상성(Non-stationary) 환경에서 멀티 암드 밴딧(Multi-Armed Bandit: MAB) 기반 태스크 오프로딩 결정 기법을 제안한다. 실험 결과로 제안된 기법이 기존의 다른 기법에 비해 전체 시스템 처리율, 통신 실패율, 후회 측면에서 더 나은 성능을 달성할 수 있음을 보인다.

얼굴 특징점을 활용한 영상 편집점 탐지 (Detection of video editing points using facial keypoints)

  • 나요셉;김진호;박종혁
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.15-30
    • /
    • 2023
  • 최근 미디어 분야에도 인공지능(AI)을 적용한 다양한 서비스가 등장하고 있는 추세이다. 하지만 편집점을 찾아 영상을 이어 붙이는 영상 편집은, 대부분 수동적 방식으로 진행되어 시간과 인적 자원의 소요가 많이 발생하고 있다. 이에 본 연구에서는 Video Swin Transformer를 활용하여, 발화 여부에 따른 영상의 편집점을 탐지할 수 있는 방법론을 제안한다. 이를 위해, 제안 구조는 먼저 Face Alignment를 통해 얼굴 특징점을 검출한다. 이와 같은 과정을 통해 입력 영상 데이터로부터 발화 여부에 따른 얼굴의 시 공간적인 변화를 모델에 반영한다. 그리고, 본 연구에서 제안하는 Video Swin Transformer 기반 모델을 통해 영상 속 사람의 행동을 분류한다. 구체적으로 비디오 데이터로부터 Video Swin Transformer를 통해 생성되는 Feature Map과 Face Alignment를 통해 검출된 얼굴 특징점을 합친 후 Convolution을 거쳐 발화 여부를 탐지하게 된다. 실험 결과, 본 논문에서 제안한 얼굴 특징점을 활용한 영상 편집점 탐지 모델을 사용했을 경우 분류 성능을 89.17% 기록하여, 얼굴 특징점을 사용하지 않았을 때의 성능 87.46% 대비 성능을 향상시키는 것을 확인할 수 있었다.