• 제목/요약/키워드: Learning about AI

Search Result 142, Processing Time 0.02 seconds

Preservice Teachers' Beliefs about Integrating Artificial Intelligence in Mathematics Education: A Scale Development Study

  • Sunghwan Hwang
    • Research in Mathematical Education
    • /
    • v.26 no.4
    • /
    • pp.333-349
    • /
    • 2023
  • Recently, AI has become a crucial tool in mathematics education due to advances in machine learning and deep learning. Considering the importance of AI, examining teachers' beliefs about AI in mathematics education (AIME) is crucial, as these beliefs affect their instruction and student learning experiences. The present study developed a scale to measure preservice teachers' (PST) beliefs about AIME through factor analysis and rigorous reliability and validity analyses. The study analyzed 202 PST's data and developed a scale comprising three factors and 11 items. The first factor gauges PSTs' beliefs regarding their roles in using AI for mathematics education (4 items), the second factor assesses PSTs' beliefs about using AI for mathematics teaching (3 items), and the third factor explores PSTs' beliefs about AI for mathematics learning (4 items). Moreover, the outcomes of confirmatory factor analysis affirm that the three-factor model outperforms other models (a one-factor or a two-factor model). These findings are in line with previous scales examining mathematics teacher beliefs, reinforcing the notion that such beliefs are multifaceted and developed through diverse experiences. Descriptive analysis reveals that overall PSTs exhibit positive beliefs about AIME. However, they show relatively lower levels of beliefs about their roles in using AI for mathematics education. Practical and theoretical implications are discussed.

Analysis of Trends of Medical Image Processing based on Deep Learning

  • Seokjin Im
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.283-289
    • /
    • 2023
  • AI is bringing about drastic changes not only in the aspect of technologies but also in society and culture. Medical AI based on deep learning have developed rapidly. Especially, the field of medical image analysis has been proven that AI can identify the characteristics of medical images more accurately and quickly than clinicians. Evaluating the latest results of the AI-based medical image processing is important for the implication for the development direction of medical AI. In this paper, we analyze and evaluate the latest trends in AI-based medical image analysis, which is showing great achievements in the field of medical AI in the healthcare industry. We analyze deep learning models for medical image analysis and AI-based medical image segmentation for quantitative analysis. Also, we evaluate the future development direction in terms of marketability as well as the size and characteristics of the medical AI market and the restrictions to market growth. For evaluating the latest trend in the deep learning-based medical image processing, we analyze the latest research results on the deep learning-based medical image processing and data of medical AI market. The analyzed trends provide the overall views and implication for the developing deep learning in the medical fields.

Generative AI as a Virtual Conversation Partner in Language Learning

  • Ji-Young Seo;Seon-Ah, Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.7-15
    • /
    • 2024
  • Despite a recent surge in multifaceted research on AI-integrated language learning, empirical studies in this area remain limited. This study adopts a Human-Generative AI parallel processing model to examine students' perceptions, asking 182 college students to independently construct knowledge and then compare their efforts with the results generated through in-classroom conversations with ChatGPT 3.5. In questionnaire responses, most students indicated that they found these activities useful and expressed a keen interest in learning various ways to utilize generative AI for language learning with instructor guidance. The findings confirm that ChatGPT's potential as a virtual conversation partner. Identifying specific reasons for the perceived usefulness of conversation activities and drawbacks of ChatGPT, this study emphasizes the importance of teachers staying informed about both the latest advances in technology and their limitations. We recommend that teachers endeavor to creatively design various classroom activities using AI technology.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

AI-Based Educational Platform Analysis Supporting Personalized Mathematics Learning (개별화 맞춤형 수학 학습을 지원하는 AI 기반 플랫폼 분석)

  • Kim, Seyoung;Cho, Mi Kyung
    • Communications of Mathematical Education
    • /
    • v.36 no.3
    • /
    • pp.417-438
    • /
    • 2022
  • The purpose of this study is to suggest implications for mathematics teaching and learning when using AI-based educational platforms that support personalized mathematics learning. To this end, we selected five platforms(Knock-knock! Math Expedition, knowre, Khan Academy, MATHia, CENTURY) and analyzed how the AI-based educational platforms for mathematics reflect the three elements(PLP, PLN, PLE) to support personalized learning. The results of this study showed that although the characteristics of PLP, PLN, and PLE implemented on each platform varied, they were designed to form PLEs that allow learners to make their autonomous decisions about learning based on PLP and PLN. The significance of this study can be found in that it has improved the understanding and practicability of personalized mathematics learning with the AI-based educational platforms.

Designing the Framework of Evaluation on Learner's Cognitive Skill for Artificial Intelligence Education through Computational Thinking (Computational Thinking 기반 인공지능교육을 통한 학습자의 인지적역량 평가 프레임워크 설계)

  • Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to design the framework of evaluation on learner's cognitive skill for artificial intelligence(AI) education through computational thinking. To design the rubric and framework for evaluating the change of leaner's intrinsic thinking, the evaluation process was consisted of a sequential stage with a) agency that cognitive learning assistance for data collection, b) abstraction that recognizes the pattern of data and performs the categorization process by decomposing the characteristics of collected data, and c) modeling that constructing algorithms based on refined data through abstraction. The evaluating framework was designed for not only the cognitive domain of learners' perceptions, learning, behaviors, and outcomes but also the areas of knowledge, competencies, and attitudes about the problem-solving process and results of learners to evaluate the changes of inherent cognitive learning about AI education. The results of the research are meaningful in that the evaluating framework for AI education was developed for the development of individualized evaluation tools according to the context of teaching and learning, and it could be used as a standard in various areas of AI education in the future.

Analyzing Teachers' Educational Needs to Strengthen AI Convergence Education Capabilities (AI 융합교육 역량 강화를 위한 교사의 교육요구도 분석)

  • JaMee Kim;Yong Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.121-130
    • /
    • 2023
  • In the school field, AI convergence education is recommended, which utilizes AI in education to change the paradigm of society. This study was conducted to define the terms of AI and AI convergence education to minimize the confusion of terms and to analyze the educational needs of teachers from the perspective of conducting AI convergence education. To achieve the purpose, 19 experts' opinions were collected, and a self-administered questionnaire was administered to 125 secondary school teachers enrolled in the AI convergence major at the Graduate School of Education. As a result of the analysis, the experts defined AI convergence education as a methodology for problem solving, not AI-based or utilization education. In the analysis of teachers' educational needs, "AI and big data" was ranked first, followed by "AI convergence education methodology" and "learning practice using AI". The significance of this study is that it defined the terminology by collecting the opinions of experts amidst the confusion of various terms related to AI, and presented the educational direction of AI convergence education for in-service teachers.

Event diagnosis method for a nuclear power plant using meta-learning

  • Hee-Jae Lee;Daeil Lee;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1989-2001
    • /
    • 2024
  • Artificial intelligence (AI) techniques are now being considered in the nuclear field, but application faces with the lack of actual plant data. For this reason, most previous studies on AI applications in nuclear power plants (NPPs) have relied on simulators or thermal-hydraulic codes to mimic the plants. However, it remains uncertain whether an AI model trained using a simulator can properly work in an actual NPP. To address this issue, this study suggests the use of metadata, which can give information about parameter trends. Referred to here as robust AI, this concept started with the idea that although the absolute value of a plant parameter differs between a simulator and actual NPP, the parameter trend is identical under the same scenario. Based on the proposed robust AI, this study designs an event diagnosis algorithm to classify abnormal and emergency scenarios in NPPs using prototypical learning. The algorithm was trained using a simulator referencing a Westinghouse 990 MWe reactor and then tested in different environments in Advanced Power Reactor 1400 MWe simulators. The algorithm demonstrated robustness with 100 % diagnostic accuracy (117 out of 117 scenarios). This indicates the potential of the robust AI-based algorithm to be used in actual plants.

A Study on Impact of Deep Learning on Korean Economic Growth Factor

  • Dong Hwa Kim;Dae Sung Seo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.90-99
    • /
    • 2023
  • This paper deals with studying strategy about impact of deep learning (DL) on the factor of Korean economic growth. To study classification of impact factors of Korean economic growth, we suggest dynamic equation of microeconomy and study methods on economic growth impact of deep learning. Next step is to suggest DL model to dynamic equation with Korean economy data with growth related factors to classify what factor is import and dominant factors to build policy and education. DL gives an influence in many areas because it can be implemented with ease as just normal editing works and speak including code development by using huge data. Currently, young generations will take a big impact on their job selection because generative AI can do well as much as humans can do it everywhere. Therefore, policy and education methods should be rearranged as new paradigm. However, government and officers do not understand well how it is serious in policy and education. This paper provides method of policy and education for AI education including generative AI through analysing many papers and reports, and experience.

Methods to Use AI Programing in Environmental Education for Elementary School Curriculum (초등 환경교육에서 인공지능 프로그래밍 활용 방법)

  • Yong-Bae Lee
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.407-416
    • /
    • 2022
  • Although environmental education has been more important due to global extreme weather and natural desasters, environmental topics are covered by several other subjects because it is not an independent subject in elementary school and they need to distribute more class hours to cover proper amount of environmental content. This study is performed to develop method to integrate environmental education and software education in elementary school. This method helps students to learn topics about recycling by using Artificial Intelligence programming and Artificial Intelligence also helps students to practice recycling in virtual reality. A new teaching and learning module(Problem Recognition→Machine Learning↔Use of AI→Collaboration) is adopted for the learning procedure and more than 80 % of the students replied positively to the survey about the interest on integrated learning, understanding of environmental education, understanding of Artificial Intelligence, further learning on Artificial Intelligence programming.