• Title/Summary/Keyword: Learning Object

Search Result 1,545, Processing Time 0.035 seconds

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

A Development of Query-Answer Learning Tool based on LTSA (LTSA 기반의 질의 응답 학습 도구 개발)

  • Kim, Haeng-Kon;Kim, Jung-Soo
    • The KIPS Transactions:PartA
    • /
    • v.10A no.3
    • /
    • pp.269-278
    • /
    • 2003
  • The popularity of the web based education has come the need for variety learning methods and for business to exploit the web not only for interoperability but also standardization. This way of standardization has come to researched for environments, contents and practical uses in ISO. The IEEE has special]y established five technical classes for LTSA which provide advanced e-learning environments. Feedback functions would not be supported and specified in standardization for Query Answer on LTSA. In this paper, we describe the query and answer model which we have developed on layer three of LTSA. We develop the redefined model for transforming data flow oriented into object or component based model. We have developed the Query Answer Metadata (QAM) based on Learning Object Metadata (LOM). We design and showed thing a prototyping implementation the Query Answer Learning Tool (QALT). We have used the QALT to address the problem of efficiency of web based education. We also used it to develop the related tools with quality and productivity.

A Study of Implementation for SCORM based Learning Management System (SCORM기반 교수 학습 시스템 구현에 대한 연구)

  • Park, Hea-Sook
    • Journal of Digital Contents Society
    • /
    • v.9 no.3
    • /
    • pp.499-507
    • /
    • 2008
  • This paper aims at studying the new SCORM based e-Learning system and self-course design method. To construct this aims, we have researched the merits, shortcomings and characteristics of the previous LMS(Learning Management System) and we have researched the merits, shortcomings and characteristics of SCORM(Sharable Content Object Reference Model). SCORM was suggested ADL (Advanced Distributed Learning) to elevate the reusability of learning contents. Also we have researched the related researches of SCORM, SCORM based LMS and case studies. This paper suggests the level based self learning and course design and the system based on SCORM. This system has elevated the effectiveness and satisfaction of the learners.

  • PDF

Synthetic Image Generation for Military Vehicle Detection (군용물체탐지 연구를 위한 가상 이미지 데이터 생성)

  • Se-Yoon Oh;Hunmin Yang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.392-399
    • /
    • 2023
  • This research paper investigates the effectiveness of using computer graphics(CG) based synthetic data for deep learning in military vehicle detection. In particular, we explore the use of synthetic image generation techniques to train deep neural networks for object detection tasks. Our approach involves the generation of a large dataset of synthetic images of military vehicles, which is then used to train a deep learning model. The resulting model is then evaluated on real-world images to measure its effectiveness. Our experimental results show that synthetic training data alone can achieve effective results in object detection. Our findings demonstrate the potential of CG-based synthetic data for deep learning and suggest its value as a tool for training models in a variety of applications, including military vehicle detection.

Covariance-based Recognition Using Machine Learning Model

  • Osman, Hassab Elgawi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.223-228
    • /
    • 2009
  • We propose an on-line machine learning approach for object recognition, where new images are continuously added and the recognition decision is made without delay. Random forest (RF) classifier has been extensively used as a generative model for classification and regression applications. We extend this technique for the task of building incremental component-based detector. First we employ object descriptor model based on bag of covariance matrices, to represent an object region then run our on-line RF learner to select object descriptors and to learn an object classifier. Experiments of the object recognition are provided to verify the effectiveness of the proposed approach. Results demonstrate that the propose model yields in object recognition performance comparable to the benchmark standard RF, AdaBoost, and SVM classifiers.

  • PDF

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • Journal of Broadcast Engineering
    • /
    • v.25 no.7
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

Deep Learning-Based Roundabout Traffic Analysis System Using Unmanned Aerial Vehicle Videos (드론 영상을 이용한 딥러닝 기반 회전 교차로 교통 분석 시스템)

  • Janghoon Lee;Yoonho Hwang;Heejeong Kwon;Ji-Won Choi;Jong Taek Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2023
  • Roundabouts have strengths in traffic flow and safety but can present difficulties for inexperienced drivers. Demand to acquire and analyze drone images has increased to enhance a traffic environment allowing drivers to deal with roundabouts easily. In this paper, we propose a roundabout traffic analysis system that detects, tracks, and analyzes vehicles using a deep learning-based object detection model (YOLOv7) in drone images. About 3600 images for object detection model learning and testing were extracted and labeled from 1 hour of drone video. Through training diverse conditions and evaluating the performance of object detection models, we achieved an average precision (AP) of up to 97.2%. In addition, we utilized SORT (Simple Online and Realtime Tracking) and OC-SORT (Observation-Centric SORT), a real-time object tracking algorithm, which resulted in an average MOTA (Multiple Object Tracking Accuracy) of up to 89.2%. By implementing a method for measuring roundabout entry speed, we achieved an accuracy of 94.5%.

Efficient Cyber Lecture System using SCC (강의객체를 이용한 효율적인 가상강의 시스템)

  • 강정배;김선경
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2004
  • E-Learning standard SCORM has been prepared in the United States to establish the efficient operation and development of e-Learning. The learning object of the current SCORM focuses on easy development and reusability in the professor's side. In this study instead, we present a SCC (Sharable Content Collection) scheme which can provide various studying opportunities to the learners. Constructing an efficient SCC requires improving the SCO (Sharable Content Object), a key ingredient of SCORM, and analyzing the cyber lecture into components. In this way we suggest a method to improve the existing learning objects and present an e-Learning model based on SCC.

  • PDF

The Study for Type of Mask Wearing Dataset for Deep learning and Detection Model (딥러닝을 위한 마스크 착용 유형별 데이터셋 구축 및 검출 모델에 관한 연구)

  • Hwang, Ho Seong;Kim, Dong heon;Kim, Ho Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.131-135
    • /
    • 2022
  • Due to COVID-19, Correct method of wearing mask is important to prevent COVID-19 and the other respiratory tract infections. And the deep learning technology in the image processing has been developed. The purpose of this study is to create the type of mask wearing dataset for deep learning models and select the deep learning model to detect the wearing mask correctly. The Image dataset is the 2,296 images acquired using a web crawler. Deep learning classification models provided by tensorflow are used to validate the dataset. And Object detection deep learning model YOLOs are used to select the detection deep learning model to detect the wearing mask correctly. In this process, this paper proposes to validate the type of mask wearing datasets and YOLOv5 is the effective model to detect the type of mask wearing. The experimental results show that reliable dataset is acquired and the YOLOv5 model effectively recognize type of mask wearing.

Data Augmentation Method of Small Dataset for Object Detection and Classification (영상 내 물체 검출 및 분류를 위한 소규모 데이터 확장 기법)

  • Kim, Jin Yong;Kim, Eun Kyeong;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.184-189
    • /
    • 2020
  • This paper is a study on data augmentation for small dataset by using deep learning. In case of training a deep learning model for recognition and classification of non-mainstream objects, there is a limit to obtaining a large amount of training data. Therefore, this paper proposes a data augmentation method using perspective transform and image synthesis. In addition, it is necessary to save the object area for all training data to detect the object area. Thus, we devised a way to augment the data and save object regions at the same time. To verify the performance of the augmented data using the proposed method, an experiment was conducted to compare classification accuracy with the augmented data by the traditional method, and transfer learning was used in model learning. As experimental results, the model trained using the proposed method showed higher accuracy than the model trained using the traditional method.