• Title/Summary/Keyword: Learning Object

Search Result 1,565, Processing Time 0.028 seconds

Layered Object Detection using Gaussian Mixture Learning for Complex Environment (혼잡한 환경에서 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyeong;Kim, Heon-Gi;Jo, Seong-Won;Kim, Jae-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.435-438
    • /
    • 2007
  • 움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모텔은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.

  • PDF

Generator of Content Package Metadata for Learning Object Sequencing (학습 객체 시퀀싱을 위한 컨텐츠 패키지 메타데이터 생성기)

  • 국선화;박복자;정영식
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.897-900
    • /
    • 2003
  • 본 논문에서는 SCORM 기반 시퀀싱 모델을 기반으로 학습객체의 구조에 대한 정보, 학습자에게 학습 객체를 어떻게 전달할 지를 결정하는 규칙 등을 포함하고 있는 컨텐츠 구조를 제시하고 학습 컨텐츠의 재사용과 공유가 가능하고 동일한 학습 컨텐츠에 서로 다른 교수법을 적용하여 교육의 효과를 달리할 수 있도록 시퀀싱을 위한 컨텐츠 패키지 메타데이터 생성기를 개발한다. 또한 학습자 정보 트래킹을 위한 SCO(Sharable Content Object)함수를 부착하여 학습 객체가 SCORM RTE(Run-Time Environment)와 통신 할 수 있도록 PIF(Package Interchange File)로 자동 패키징 시킨다.

  • PDF

Design and Implementation of A Cyber-school System Based on Web Groupware (웹 그룹웨어 기반의 가상학교 시스템의 설계 및 구현)

  • 고일석;나윤지
    • The Journal of Information Technology and Database
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 2001
  • This paper presents a design and implementation of cyber-school system using object modeling technique and web groupware. The system design method based on object modeling techniques reduce cyber-school construction effort and cost with reusing of modules. The system is a kind of web group application based on WWW that allow members who located on remote computer to do cooperative learning and to communicate with other students and teachers independent of time and location. In this system we use Linux operating system for efficient development on real education field. and we can reduce cyber-school development effort arid cost With this system.

  • PDF

3-D Underwater Object Recognition Independent of Translation Using Porous PZT Ultrasonic Sensor (다공질 압전 초음파 센서를 이용한 물체변위에 무관한 3차원 수중 물체인식)

  • Cho, Hyun-Chul;Lee, Kee-Seong;Lee, Su-Ho;Park, Jung-Hak;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1370-1372
    • /
    • 1997
  • In this study, 3-D underwater object recognition using ultrasonic sensor fabricated with porous piezoelectric ceramics and SCL(Simple Competitive Learning) neural networks are presented. The recognition rates for the training data and the testing dara were 96 and 93%, respectively.

  • PDF

Magnetic Substance Search Using Finite Element Method and Neural Network (유한요소법과 인공지능을 이용할 자성체 탐사)

  • Lee, Kang-Woo;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.198-200
    • /
    • 1997
  • This paper consider a simple Nondestructive Testing(NDT) having eddy currnt effect. We analyzed the two dimension modeling of alternative magnetic field. eddy current with voltage source. And, the current magnitude and phase data obtained from each different frequency five object position is used for learning the neural network. Therefore, we can recognize an object position pattern from new input current magnitude, phase data.

  • PDF

Interactive Teaching and Self-Study Tools for Power Electronics

  • Ertugrul, Nesimi
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.258-267
    • /
    • 2002
  • This paper presents the principal features of the software modules developed to provide an interactive teaching/learning environment in Power Electronics that can be used by educators and students. The software modules utilize an object oriented programming LabVIEW that provides a highly flexible graphical user interface. The paper highlights the principal features the software components and illustrates a number of highly interactive graphical user interfaces of selected Power Electronics circuits and systems.

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Automatic Dataset Generation of Object Detection and Instance Segmentation using Mask R-CNN (Mask R-CNN을 이용한 물체인식 및 개체분할의 학습 데이터셋 자동 생성)

  • Jo, HyunJun;Kim, Dawit;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 2019
  • A robot usually adopts ANN (artificial neural network)-based object detection and instance segmentation algorithms to recognize objects but creating datasets for these algorithms requires high labeling costs because the dataset should be manually labeled. In order to lower the labeling cost, a new scheme is proposed that can automatically generate a training images and label them for specific objects. This scheme uses an instance segmentation algorithm trained to give the masks of unknown objects, so that they can be obtained in a simple environment. The RGB images of objects can be obtained by using these masks, and it is necessary to label the classes of objects through a human supervision. After obtaining object images, they are synthesized with various background images to create new images. Labeling the synthesized images is performed automatically using the masks and previously input object classes. In addition, human intervention is further reduced by using the robot arm to collect object images. The experiments show that the performance of instance segmentation trained through the proposed method is equivalent to that of the real dataset and that the time required to generate the dataset can be significantly reduced.

Estimation of Moving Direction of Objects for Vehicle Tracking in Underground Parking Lot (지하 주차장 차량 추적을 위한 객체의 이동 방향 추정)

  • Nguyen, Huu Thang;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.305-311
    • /
    • 2021
  • One of the highly reliable object tracking methods is to trace objects by associating objects detected by deep learning. The detected object is represented by a rectangular box. The box has information such as location and size. Since the tracker has motion information of the object in addition to the location and size, knowing additional information about the motion of the detected box can increase the reliability of object tracking. In this paper, we present a new method of reliably estimating the moving direction of the detected object in underground parking lot. First, the frame difference image is binarized for detecting motion energy, change due to the object motion. Then, a cumulative binary image is generated that shows how the motion energy changes over time. Next, the moving direction of the detected box is estimated from the accumulated image. We use a new cost function to accurately estimate the direction of movement of the detected box. The proposed method proves its performance through comparative experiments of the existing methods.

Thermal Imagery-based Object Detection Algorithm for Low-Light Level Nighttime Surveillance System (저조도 야간 감시 시스템을 위한 열영상 기반 객체 검출 알고리즘)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.129-136
    • /
    • 2020
  • In this paper, we propose a thermal imagery-based object detection algorithm for low-light level nighttime surveillance system. Many features selected by Haar-like feature selection algorithm and existing Adaboost algorithm are often vulnerable to noise and problems with similar or overlapping feature set for learning samples. It also removes noise from the feature set from the surveillance image of the low-light night environment, and implements it using the lightweight extended Haar feature and adaboost learning algorithm to enable fast and efficient real-time feature selection. Experiments use extended Haar feature points to recognize non-predictive objects with motion in nighttime low-light environments. The Adaboost learning algorithm with video frame 800*600 thermal image as input is implemented with CUDA 9.0 platform for simulation. As a result, the results of object detection confirmed that the success rate was about 90% or more, and the processing speed was about 30% faster than the computational results obtained through histogram equalization operations in general images.