• Title/Summary/Keyword: Learning Maps

Search Result 279, Processing Time 0.022 seconds

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.

The Effects of Instructional Strategy using Thinking Maps focused on Drawing in Elementary School Science (초등과학에서 그리기 중점의 사고지도를 활용한 수업 전략의 효과)

  • Kim, Jung-Sun;Park, Jae-Keun
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.1
    • /
    • pp.54-64
    • /
    • 2016
  • The purpose of this study is to develop instructional strategy which utilizes thinking maps focused on drawing as a measure to enhance science learning motivation, self-directed learning activity and science academic achievement of learners, and to examine the effects of its application. The target unit for this study is 'life cycle of plants' in the fourth grade of elementary school. Two classes of 4th grades of elementary school were selected and divided into two groups. The learners of experimental group have completed thinking map by drawing a picture to express the results to be observed and measured, and used it to arrange the learning contents. The result of this study is as follows. First, it is proven that using thinking maps focused on drawing actually helped improving the motivation of learners to study science. Second, it is proven that this strategy was effective to change their self-directed learning ability in positive ways. Third, it contributed to the improvement of learners' science academic achievement. We found out that the application of this strategy enabled them to enjoy the mapping using drawing, to be immersed in learning, to better recognize the scientific concepts and the structure of learning contents, and to have a positive awareness of the usefulness of thinking maps focused on drawing.

Effective Educational Use of Thinking Maps in Science Instruction (과학수업에서 Thinking Maps의 효과적인 활용 방안)

  • Park, Mi-Jin;Lee, Yong-Seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • The purpose of this study is finding examine the Thinking Maps and how to use Thinking Maps effectively in Science Education. The result of this study were as follows: First, There are 8 type Maps, Circle Map, Tree Maps, Bubble Map, Double Bubble Map, Flow Map, Multi Flow Map, Brace Map, Bridge Map. Each Maps are useful in the following activities ; Circle Map-Express their thoughts. Tree Map-Activities as like determine the structure, classification, information organization. Bubble Maps-Construction. Double Bubble Map-Comparison of similarities and differences. Flow Map-Set goals, determine the result of changes in time or place. Multi Flow Map-Analysis cause and effect, expectation and reasoning. Brace Map-Analysis whole and part. Bridge Map-Activities need analogies. Second, each element of inquiry has 1~2 appropriate type of Thinking Maps. So student can choose the desired map. Third, the result of analysing of Science Curriculum Subjects, depending on the subject variety maps can be used. Therefore the Thinking Maps can be used for a variety on activities and subject. And student can be selected according to their learning style. So Thinking Maps are effective to improve student's Self-Directed Learning.

  • PDF

The Effect of Science Instruction Using Thinking Maps on Self-directed Learning Ability and Science Process Skills (Thinking Maps를 활용한 과학수업이 자기주도적 학습능력 및 과학탐구능력에 미치는 효과)

  • Lee, Yong-seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.11 no.3
    • /
    • pp.172-181
    • /
    • 2018
  • The purpose of this study is to investigate the impact on self-directed learning ability and science process skills by utilizing 'Thinking Maps' in a science class. This particular study was proceeded to 5th grader at B elementary school, there was a mutual agreement with a teacher about assigning a research group and a comparison group and it was agreed by students and explaining the reason and purpose of the study. The researchers visited the school and selected 24 students in the research class and 24 students in the comparative class. For a research group, an experimental group, homeroom teacher, proceeded a science class with the application of 'Thinking Maps'. The experimental period was set up as a 40 minutes class unit for 12 weeks. After an experimental group, self-directed learning ability and science process skills were examined, data collection and data analysis were proceeded by order. The following experimental results are as below. First, the application of 'Thinking Maps' method in the class was effective in self-directed learning ability. Second, the application of 'Thinking Maps' method in the class was effective in scientific process skills. Third, the application of 'Thinking Maps' method in the class had a positive cognition from the learners in the experimental group. Based on the discussions and implications of the results of this study, some suggestions in the follow - up study are as follows. First, applying Thinking Maps technique to various science classes to see the effects can also be suggested as one of the new teaching methods. Second, testing the effects of applying different grades of elementary school students using the Thinking Maps technique could also be highlighted as another way of teaching science classes.

Modeling for organizational learning cognitive-maps and agents perspective

  • Kwahk, Kee-Young;Kim, Young-Gul
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.241-244
    • /
    • 1996
  • There is a growing tendency to consider organizational learning as a mechanism for improving organizations and the rate at which organizations learn becomes perceived as a source for attaining competitive advantage. The objective of this research is to present a two-phase(learning efficient, and learning-effective) organizational modeling methodology based on the cognitive-maps and agents concept, and to describe how the result of the modeling can be used in the organizational learning context.

  • PDF

Knowledge Distillation based-on Internal/External Correlation Learning

  • Hun-Beom Bak;Seung-Hwan Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.31-39
    • /
    • 2023
  • In this paper, we propose an Internal/External Knowledge Distillation (IEKD), which utilizes both external correlations between feature maps of heterogeneous models and internal correlations between feature maps of the same model for transferring knowledge from a teacher model to a student model. To achieve this, we transform feature maps into a sequence format and extract new feature maps suitable for knowledge distillation by considering internal and external correlations through a transformer. We can learn both internal and external correlations by distilling the extracted feature maps and improve the accuracy of the student model by utilizing the extracted feature maps with feature matching. To demonstrate the effectiveness of our proposed knowledge distillation method, we achieved 76.23% Top-1 image classification accuracy on the CIFAR-100 dataset with the "ResNet-32×4/VGG-8" teacher and student combination and outperformed the state-of-the-art KD methods.

Fast and Robust Face Detection based on CNN in Wild Environment (CNN 기반의 와일드 환경에 강인한 고속 얼굴 검출 방법)

  • Song, Junam;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1310-1319
    • /
    • 2016
  • Face detection is the first step in a wide range of face applications. However, detecting faces in the wild is still a challenging task due to the wide range of variations in pose, scale, and occlusions. Recently, many deep learning methods have been proposed for face detection. However, further improvements are required in the wild. Another important issue to be considered in the face detection is the computational complexity. Current state-of-the-art deep learning methods require a large number of patches to deal with varying scales and the arbitrary image sizes, which result in an increased computational complexity. To reduce the complexity while achieving better detection accuracy, we propose a fully convolutional network-based face detection that can take arbitrarily-sized input and produce feature maps (heat maps) corresponding to the input image size. To deal with the various face scales, a multi-scale network architecture that utilizes the facial components when learning the feature maps is proposed. On top of it, we design multi-task learning technique to improve detection performance. Extensive experiments have been conducted on the FDDB dataset. The experimental results show that the proposed method outperforms state-of-the-art methods with the accuracy of 82.33% at 517 false alarms, while improving computational efficiency significantly.

GAN-based Color Palette Extraction System by Chroma Fine-tuning with Reinforcement Learning

  • Kim, Sanghyuk;Kang, Suk-Ju
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.125-129
    • /
    • 2021
  • As the interest of deep learning, techniques to control the color of images in image processing field are evolving together. However, there is no clear standard for color, and it is not easy to find a way to represent only the color itself like the color-palette. In this paper, we propose a novel color palette extraction system by chroma fine-tuning with reinforcement learning. It helps to recognize the color combination to represent an input image. First, we use RGBY images to create feature maps by transferring the backbone network with well-trained model-weight which is verified at super resolution convolutional neural networks. Second, feature maps are trained to 3 fully connected layers for the color-palette generation with a generative adversarial network (GAN). Third, we use the reinforcement learning method which only changes chroma information of the GAN-output by slightly moving each Y component of YCbCr color gamut of pixel values up and down. The proposed method outperforms existing color palette extraction methods as given the accuracy of 0.9140.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.