In this paper, we analyze the dynamics of langevine competitive learning neural network based on its fokker-plank equation. From the viewpont of the stochastic differential equation (SDE), langevine competitive learning equation is one of langevine stochastic differential equation and has the diffusin equation on the topological space (.ohm., F, P) with probability measure. We derive the fokker-plank equation from the proposed algorithm and prove by introducing a infinitestimal operator for markov semigroups, that the weight vector in the particular simplex can converge to the globally optimal point under the condition of some convex or pseudo-convex performance measure function. Experimental resutls for pattern recognition of the remote sensing data indicate the superiority of langevine competitive learning neural network in comparison to the conventional competitive learning neural network.
Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.
The objective of this research is to assess various factors affecting E-learning in Korean language education. In this research, we hypothesize that several factors such as absorption, motivation and tutors increase the educational effects of E-learning and ultimately affect learning attitude and satisfaction of students in E-learning. To discuss the hypothesis, we analyzed survey data of 300 students who were taking E-learning class of Korean language for three weeks in October 2007 based on Structural Equation Model. The result of our analysis shows that the factors such as absorption, motivation, tutors have positive effects on E-learning in Korean language education and positive influence on learning attitude and satisfaction on students as well.
The purpose of this research is to investigate the effects of the Cyber Home Learning Motivation Factors on its satisfaction and activation through surveying the actual conditions among the students present at a cyber home learning class. For this study, samples were collected around the end of a term from the students(300 in pilot test and 248 in main test) who were taking Cyber Home Lecture at high school level. Structural equation model by AMOS 5.0 was used to analyze the data. The result of our analysis is summarized as follows. First, the cyber home learning satisfaction has a positive effect on the cyber home learning activation. Second, the 4 factors of the cyber home learning motivation: relevancy, self-confidence and satisfaction has a positive effect on the cyber home learning satisfaction. But the factor 'attention' has no positive effect on the cyber home learning satisfaction. Therefore, the Good Cyber Home Learning Contents should provide the information quality which meets 3 conditions: relevancy, self-confidence and satisfaction.
본 연구의 목적은 블랜디드 러닝 학습 환경을 경험한 학습자를 대상으로 수업 만족에 영향을 주는 요인들을 탐색하고자 하였다. 이를 통하여 전통적 수업의 장점과 온라인 수업의 장점을 접목시킨 최근의 블랜디드 러닝 학습 환경을 대학 수업에 적용한 사례를 통해 학습자의 만족도와 관련 변인들과의 관계를 파악하고자 하였다. 연구대상은 '교육방법 및 교육공학'의 교직 수업에 참여하고 설문에 응답한 56명을 대상으로 하였다. 설문을 통하여 응답한 결과를 바탕으로 요인분석과 구조방정식 모델을 통해 학습동기, 사전경험, 정보활용능력, 자기조절학습능력, 학습만족도들 간의 관계를 탐색하였다. 연구결과 (a) '학습동기'와 (b) '사전경험'은 '자기조절학습능력'에 통계적으로 유의한 영향을 미치는 것으로 나타났다. 그리고 (c) '자기조절학습능력'은 '학습만족도'에 직접적으로 유의한 영향을 미치는 것으로 나타났다. 연구 결과를 바탕으로 수업만족도에 영향을 미치는 구조모델을 제안하였다.
The purposes of this study are to explain and identify the frame of structural relations of learning orientation, self-efficacy, learning transfer and job performance of farmers who participated in the strong and small farms education. This is an experimental research with the data collected from 495 farmers who have taken the farm education. Based on the collected data, the study conducted a structural equation modeling(SEM) to confirm the validity and analyze the structural relations of the suggested model. Using measured and latent variables drew from the analyses, the study set a structural equation model and tested the model by analysis of the structural equation modeling with AMOS 18.0. The results found from the empirical analysis can be summarized as follows. 1) Learning orientation and self-efficacy positively influenced job performance through learning transfer. 2) The hypothesis that learning orientation would have direct impact on job performance was not supported. 3) The strong and small farms education is useful to expand learning transfer and to enhance job performance. So, government policy support has to reinforce learning support on farmers in order to achieve high performance of learning and job management through farm educations.
The purpose of this study was to investigate the structural relationship among the self-efficacy, self-directed learning ability, school adjustment and learning flow in middle school students by the structural equation modeling analysis. The subjects of this study consisted of 553 middle school students. The data were analyzed with descriptive statistics, Pearson correlations and structural equation modeling analysis by using the SPSS 12.0 and AMOS 5.0 statistical program. The results of this study were as followed: First, there were significant correlations among the self-efficacy, self-directed learning ability, school adjustment and learning flow. Second, the self-directed learning ability and school adjustment directly affected the learning flow. Third, self-efficacy and school adjustment variables indirectly affected learning flow. The indices of the best fit model on these variable were adequate. This study shows that the self-efficacy, self-directed learning ability, school adjustment are the significant predictor for the learning flow during adolescent.
제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
/
pp.91-94
/
1996
This paper presents an approach to estimation of learning gain in iterative learning control for discrete-time affine nonlinear systems. In iterative learning control, to determine learning gain satisfying the convergence condition, we have to know the system model. In the proposed method, the input-output equation of a system is identified by neural network refered to as Piecewise Linearly Trained Network (PLTN). Then from the input-output equation, the learning gain in iterative learning law is estimated. The validity of our method is demonstrated by simulations.
본 연구는 대학에서 이러닝을 활용 수업의 효과에 영향을 미치는 요인들을 탐색하고 요인들 간의 인과관계를 파악하고자 하였다. 이를 위해 2013년 2학기를 기준으로 이러닝 기반의 수업인 사이버 강의에 참여한 학생들 2,091명 중 유효했던 1,732명을 연구 대상으로 하였다. 연구방법은 확인적 요인분석과 구조방정식모형 분석을 활용하였다. 확인적 요인분석을 통해 이러닝 학습효과, 컨텐츠만족요인, 시스템기능요인, 운영지원요인의 네 개의 잠재변인을 도출할 수 있었다. 이들 잠재변인들 간의 구조방정식 모델 분석을 통한 결과는 다음과 같다. 첫째, 이러닝 학습효과와 관련된 주요 요인으로 컨텐츠 요인, 기능요인, 운영지원 요인으로 구분할 수 있었다. 둘째, 이러닝 학습효과에는 운영지원, 컨텐츠 요인이 직접적 영향을 미치는 것으로 나타났다. 하지만 기능요인은 유의하지 않은 것으로 나타났다. 셋째, 컨텐츠 요인에는 기능 및 운영요인이 유의한 영향을 미치는 것으로 나타났다. 넷째, 기능요인 및 운영지원요인은 컨텐츠 요인을 매개로하여 이러닝 학습효과에 간접적 영향을 미치는 것으로 나타났다.
Statistics by structural equation modeling techniques were used to assess a model of chemistry learning strategy based on performance goal orientation. In the optimal Model III of this research, Performance-approach goal was positively related to the use of learning strategy(p<.05) and achievement need(p<.05). Performance-avoidance goal was negatively related to learning strategy(p<.05) and was positively related to self-handicapping tendency(p<.15). Performance-approach goal affected learning strategy indirectly through achievement need(p<.05). Use of achievement need was positively related to learning strategy(p<.05) and self-handicapping tendency(p<.35). Self-handicapping tendency affected learning strategy negatively(p<.05). Implications of these findings for learning strategy in chemistry education are discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.