• Title/Summary/Keyword: Learning Control Algorithm

Search Result 958, Processing Time 0.03 seconds

A Study on a neural-Net Based Call admission Control Using Fuzzy Pattern Estimator for ATM Networks (ATM망에서 퍼지 패턴 추정기를 이용한 신경망 호 수락제어에 관한 연구)

  • 이진이;이종찬;이종석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.173-179
    • /
    • 1998
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neural net, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Menas) arithmatics, to decide whether a requested call that is not trained in learning phase to be connected or not. The system generates the estimated traffic pattern of the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmatics. The input to the NN is the vector consisted of traffic parameters which is the means and variances of the number of cells arriving inthe interval. After training(using error back propagation algorithm), when the NN is used for decision making, the decision as to whether to accept or reject a new call depends on whether the output is greater or less then decision threshold(+0.5). This method is a new technique for call admi sion control using the membership values as traffic parameter which declared to CAC at the call set up stage, and is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simmulation. it is founded the performance of the suggested method outforms compared to the conventional NN method.

  • PDF

Efficient Multicasting Mechanism for Mobile Computing Environment (경사 감소 학습을 이용한 적응 PID 제어기)

  • Park, Jin-Hyun;Jun, Hyang-Sig;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.289-292
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But it is difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose an adaptive PID controller based on a gradient descent learning. This algorithm has a simple structure like conventional PID controller and robustness to system parameters variation. To verify performances of the proposed adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

Interface Establishment between Reinforcement Learning Algorithm and External Analysis Program for AI-based Automation of Bridge Design Process (AI기반 교량설계 프로세스 자동화를 위한 강화학습 알고리즘과 외부 해석프로그램 간 인터페이스 구축)

  • Kim, Minsu;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.403-408
    • /
    • 2021
  • Currently, in the design process of civil structures such as bridges, it is common to make final products by repeating the process of redesigning, if the initial design is found to not meet the standards after a structural review. This iterative process extends the design time, and causes inefficient consumption of engineering manpower, which should be put into higher-level design, on simple repetitive mechanical work. This problem can be resolved by automating the design process, but the external analysis program used in the design process has been the biggest obstacle to such automation. In this study, we constructed an AI-based automation system for the bridge design process, including an interface that could control both a reinforcement learning algorithm, and an external analysis program, to replace the repetitive tasks in the current design process. The prototype of the system built in this study was developed for a 2-span RC Rahmen bridge, which is one of the simplest bridge systems. In the future, it is expected that the developed interface system can be utilized as a basic technology for linking the latest AI with other types of bridge designs.

Position Estimation Using Neural Network for Navigation of Wheeled Mobile Robot (WMR) in a Corridor

  • Choi, Kyung-Jin;Lee, Young-Hyun;Park, Chong-Kug
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1259-1263
    • /
    • 2004
  • This paper describes position estimation algorithm using neural network for the navigation of the vision-based wheeled mobile robot (WMR) in a corridor with taking ceiling lamps as landmark. From images of a corridor the lamp's line on the ceiling in corridor has a specific slope to the lateral position of the WMR. The vanishing point produced by the lamp's line also has a specific position to the orientation of WMR. The ceiling lamps have a limited size and shape like a circle in image. Simple image processing algorithms are used to extract lamps from the corridor image. Then the lamp's line and vanishing point's position are defined and calculated at known position of WMR in a corridor. To estimate the lateral position and orientation of WMR from an image, the relationship between the position of WMR and the features of ceiling lamps have to be defined. But it is hard because of nonlinearity. Therefore, data set between position of WMR and features of lamps are configured. Neural network are composed and learned with data set. Back propagation algorithm(BPN) is used for learning. And it is applied in navigation of WMR in a corridor.

  • PDF

Deep Learning-Based Modulation Detection for NOMA Systems

  • Xie, Wenwu;Xiao, Jian;Yang, Jinxia;Wang, Ji;Peng, Xin;Yu, Chao;Zhu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.658-672
    • /
    • 2021
  • Since the signal with strong power need be demodulated first for successive interference cancellation (SIC) receiver in non-orthogonal multiple access (NOMA) systems, the base station (BS) need inform the near user terminal (UT), which has allocated higher power, of the far UT's modulation mode. To avoid unnecessary signaling overhead of control channel, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, the deep residual network is built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and lose their real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed.

Examination of Aggregate Quality Using Image Processing Based on Deep-Learning (딥러닝 기반 영상처리를 이용한 골재 품질 검사)

  • Kim, Seong Kyu;Choi, Woo Bin;Lee, Jong Se;Lee, Won Gok;Choi, Gun Oh;Bae, You Suk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.255-266
    • /
    • 2022
  • The quality control of coarse aggregate among aggregates, which are the main ingredients of concrete, is currently carried out by SPC(Statistical Process Control) method through sampling. We construct a smart factory for manufacturing innovation by changing the quality control of coarse aggregates to inspect the coarse aggregates based on this image by acquired images through the camera instead of the current sieve analysis. First, obtained images were preprocessed, and HED(Hollistically-nested Edge Detection) which is the filter learned by deep learning segment each object. After analyzing each aggregate by image processing the segmentation result, fineness modulus and the aggregate shape rate are determined by analyzing result. The quality of aggregate obtained through the video was examined by calculate fineness modulus and aggregate shape rate and the accuracy of the algorithm was more than 90% accurate compared to that of aggregates through the sieve analysis. Furthermore, the aggregate shape rate could not be examined by conventional methods, but the content of this paper also allowed the measurement of the aggregate shape rate. For the aggregate shape rate, it was verified with the length of models, which showed a difference of ±4.5%. In the case of measuring the length of the aggregate, the algorithm result and actual length of the aggregate showed a ±6% difference. Analyzing the actual three-dimensional data in a two-dimensional video made a difference from the actual data, which requires further research.

Development of Sludge Concentration Estimation Method using Neuro-Fuzzy Algorithm (뉴로-퍼지 알고리즘을 이용한 슬러지 농도 추정 기법 개발)

  • Jang, Sang-Bok;Lee, Ho-Hyun;Lee, Dae-Jong;Kweon, Jin-Hee;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • A concentration meter is widely used at purification plants, sewage treatment plants and waste water treatment plants to sort and transfer high concentration sludge and to control the amount of chemical dosage. When the strange substance is contained in the sludge, however, the attenuation of ultrasonic wave could be increased or not be transmitted to the receiver. At that case, the value of concentration meter is higher than the actual density value or vibrated up and down. It has also been difficult to automate the residuals treatment process according to the problems as sludge attachment or damage of a sensor. Multi-beam ultrasonic concentration meter has been developed to solve these problems, but the failure of the ultrasonic beam of a specific concentration measurement value degrade the performance of the entire system. This paper proposes the method to improve the accuracy of sludge concentration rate by choosing reliable sensor values and learning them by proposed algorithm. The prediction algorithm is chosen as neuro-fuzzy model, which is tested by the various experiments.

AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera (모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.471-479
    • /
    • 2018
  • Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF