• Title/Summary/Keyword: Learning Control Algorithm

Search Result 947, Processing Time 0.028 seconds

Digital Twin and Visual Object Tracking using Deep Reinforcement Learning (심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적)

  • Park, Jin Hyeok;Farkhodov, Khurshedjon;Choi, Piljoo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.

Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system (동등 변환 2계층 퍼지 시스템의 규칙 자동 학습)

  • Joo, Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.598-603
    • /
    • 2007
  • To solve the rule explosion problem in multi-input fuzzy system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system has been reported, where at the 1st layer, linearly independent fuzzy rule vectors generated from the given fuzzy system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used. In this paper, the steapest descent algorithm is presented to learn the fuzzy rule vectors and related coefficients for the equivalent 2 layered hierarchical structure. By simulation of learning of ball and beam control system, the feasibility of proposed learning scheme is shown.

Deep Learning based Loss Recovery Mechanism for Video Streaming over Mobile Information-Centric Network

  • Han, Longzhe;Maksymyuk, Taras;Bao, Xuecai;Zhao, Jia;Liu, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4572-4586
    • /
    • 2019
  • Mobile Edge Computing (MEC) and Information-Centric Networking (ICN) are essential network architectures for the future Internet. The advantages of MEC and ICN such as computation and storage capabilities at the edge of the network, in-network caching and named-data communication paradigm can greatly improve the quality of video streaming applications. However, the packet loss in wireless network environments still affects the video streaming performance and the existing loss recovery approaches in ICN does not exploit the capabilities of MEC. This paper proposes a Deep Learning based Loss Recovery Mechanism (DL-LRM) for video streaming over MEC based ICN. Different with existing approaches, the Forward Error Correction (FEC) packets are generated at the edge of the network, which dramatically reduces the workload of core network and backhaul. By monitoring network states, our proposed DL-LRM controls the FEC request rate by deep reinforcement learning algorithm. Considering the characteristics of video streaming and MEC, in this paper we develop content caching detection and fast retransmission algorithm to effectively utilize resources of MEC. Experimental results demonstrate that the DL-LRM is able to adaptively adjust and control the FEC request rate and achieve better video quality than the existing approaches.

Crystallization of High Purity Ammonium Meta-Tungstate for production of Ultrapure Tungsten Metal

  • Choi, Cheong-Song
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.1-5
    • /
    • 1997
  • The growth mechanism of AMT(Ammonium Meta-Tungstate) crystal was interpreted as two-step model. The contribution of the diffusion step increased with the increase of temperature, crystal size, and supersaturation. The crystal size distribution from a batch cooling crystallizer was predicted by the numerical solution of a mathematical model which uses the kinetics of nucleation and crystal growth. Temperature control of a batch crystallizer was studied using Learning control algorithm. The purity of AMT crystal producted in this investigation was above 99.99%.

  • PDF

The Design of Neural Networks Controller for Position Control of Flexible Robot Link (유연성 로봇 링크의 위치제어를 위한 신경망 제어기의 설계)

  • 탁한호;이주원;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.121-124
    • /
    • 1997
  • In this paper, applications of self-recurrent neural networks based of adaptive controller to position control of flexible robot link are considered. The self-recurrent neural networks can be used to approximate any continuous function to any desired degree of accuracy and the weights are updated by feedback-error learning algorithm. Therefore, a comparative analysis was mode with linear controller through an simulation. The results are presented to illustrate the advantages and improved performance of the proposed position tracking controller over the conventional linear controller.

  • PDF

Improving Learning Performance of Support Vector Machine using the Kernel Relaxation and the Dynamic Momentum (Kernel Relaxation과 동적 모멘트를 조합한 Support Vector Machine의 학습 성능 향상)

  • Kim, Eun-Mi;Lee, Bae-Ho
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.735-744
    • /
    • 2002
  • This paper proposes learning performance improvement of support vector machine using the kernel relaxation and the dynamic momentum. The dynamic momentum is reflected to different momentum according to current state. While static momentum is equally influenced on the whole, the proposed dynamic momentum algorithm can control to the convergence rate and performance according to the change of the dynamic momentum by training. The proposed algorithm has been applied to the kernel relaxation as the new sequential learning method of support vector machine presented recently. The proposed algorithm has been applied to the SONAR data which is used to the standard classification problems for evaluating neural network. The simulation results of proposed algorithm have better the convergence rate and performance than those using kernel relaxation and static momentum, respectively.

Robust Control of Robot Manipulator Based-on DSPs(TMS320C50) (DSPs(TMS320C50)을 이용한 로봇 매니퓰레이터의 견실제어)

  • 이우송;김종수;김홍래;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.193-200
    • /
    • 2004
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

Performance analysis of learning algorithm for a self-tuning fuzzy logic controller (자기 동조 퍼지 논리 제어기를 위한 학습 알고리즘의 성능 분석)

  • 정진현;이진혁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.11
    • /
    • pp.2189-2198
    • /
    • 1994
  • In this paper, a self-tuning fuzzy logig controller is implemented to control a DC servo motor by the self-tuning technique based on fuzzy meta-rules with learning in several algorithms to improve the performance of the fuzzy logic controller used in a fuzzy control system. Simulations and experimental results of the self-tuning fuzzy logic controller are compared with those of the fuzzy logic controller to evaluate its performance.

  • PDF

The design of neural network adaptive control system (신경회로망 적응제어시스템의 설계)

  • 김용택;김용호;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.150-155
    • /
    • 1993
  • The neural network MRAC system is presented. The purpose of this paper is applied to a plant that is to be controlled in a strongly nonlinear environment. The proposed system has a learning and adaptive ability in the varying environment by using the back-propagation learning algorithm based on Lyapunov stability theory. N.N. regulator is a part of overall system and is guaranteed to be stable in initial stage. Nonlinear terms of the varying mass, colilori, centifugal, and gravity are compensated for by feedforward N.N. regulator. And the feedback controller (adaptive mechanism) works to eliminate errors of position, velocity which the feedforward controller cannot compensate for. Finally, the proposed system will be demonstrated by simulation of a two d.o.f robot manipulator.

  • PDF

Modular Fuzzy Inference Systems for Nonlinear System Control (비선형 시스템 제어를 위한 모듈화 피지추론 시스템)

  • 권오신
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.395-399
    • /
    • 2001
  • This paper describes modular fuzzy inference systems(MFIS) with adaptive capability to extract fuzzy inference modules from observation data through the learning process. The proposed MFIS is based on the structural similarity to Tagaki-Sugeno fuzzy models and a modular neural architecture. The learning of MFIS is done by assigning new fuzzy inference modules and by updating the parameters of existing modules. The fuzzy inference modules consist of local model network and fuzzy gating network. The parameters of the MFIS are updated by the standard LMS algorithm. The performance of the MFIS is illustrated with adaptive control of a nonlinear dynamic system.

  • PDF