• Title/Summary/Keyword: Learning Control Algorithm

Search Result 947, Processing Time 0.026 seconds

Identification and Control for Nonlinear Discrete Time Systems Using an Interconnected Neural Network

  • Yamamoto, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.994-998
    • /
    • 2005
  • A new control method, called a simple model matching, has been recently developed by the author. This is very simple and be applied for linear and nonlinear discrete time systems with/without time lag. Based on this formulation, identification is examined in this paper using an interconnected neural network with the EBP-EWLS learning algorithm. With this result, a control method is also presented for a nonlinear discrete time system.

  • PDF

Intelligent control system design of track vehicle based-on fuzzy logic (퍼지 로직에 의한 궤도차량의 지능제어시스템 설계)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Analysis and Application of Misconception Flowchart for Programming Control Structure Concept Learning (프로그래밍 제어구조 개념 학습을 위한 오개념 순서도 분석 및 적용)

  • Choi, Youngmee
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.2000-2008
    • /
    • 2017
  • The purpose of this study is to analyze the misconception flowchart of programming control structure and to suggest it as a method for improving computational thinking. In this study, we divide programming control structure concept into sequential, iteration, selection, and function, analyze what concept and principle are difficult for each learner, and what kind of misconception flowchart is drawn in the Introduction of C Programming course for beginners' programming learning. As an example, we show that a lesson learned from the process of correcting the misconception flowchart to the correct flowchart in the course.

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법에 의한 이동 로봇의 자율주행 제어시스템 개발)

  • 김종수;한덕기;김영규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.250-254
    • /
    • 2001
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

  • Yildirim Sahin;Eski Ikbal
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.917-928
    • /
    • 2006
  • In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable attention in many disciplines, including robot control, where they can be used to solve nonlinear control problems. One of these ANNs applications is that of the inverse kinematic problem, which is important in robot path planning. In this paper, a neural network is employed to analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The FNN is trained with different types of learning algorithm for designing exact inverse model of the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational joints. Inverse neural network model of the robot is trained with different learning algorithms for finding exact model of the robot. From the simulation results, the proposed neural network has superior performance for modelling complex robot's kinematics.

A Study on the Neuro-Fuzzy Control and Its Application

  • So, Myung-Ok;Yoo, Heui-Han;Jin, Sun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.228-236
    • /
    • 2004
  • In this paper. we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feed forward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand. feed forward neural networks provide salient features. such as learning and parallelism. In the proposed neuro-fuzzy controller. the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error back propagation algorithm as a learning rule. while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally. the effectiveness of the proposed controller is verified through computer simulation for an inverted pole system.

Development of Automatic Cruise Control System of Mobile Robot Using Fuzzy-Neural Control Technique (퍼지-뉴럴 제어기법을 이용한 이동형 로봇의 자율주행 제어시스템 개발)

  • 김휘동;양승윤;전완수;안병국;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.130-134
    • /
    • 2000
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Study on the Load Frequency Control of Power System Using Neural Networks (신경회로망을 이용한 전력계통의 부하주파수제어에 관한 연구)

  • Joo, S.W.;Yoon, J.T.;Kim, S.H.;Chong, H.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.600-602
    • /
    • 1995
  • The paper presents neural network control techniques for load frequency control of two area power system. Using learning algorithm of error back propagation after learning accept input on the optimal control $e_{i}$, $\dot{e}_{i}$, and $u_{i}$ frequency characteristic and tie-line load flow characteristic investigated dynamic. From result simulation, frequency deviation and tie-line load flow deviation have reduction remarkable.

  • PDF

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF