• 제목/요약/키워드: Learning Control Algorithm

검색결과 947건 처리시간 0.032초

유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계 (The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index)

  • 오성권;윤기찬;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Modeling the Properties of the PECVD Silicon Dioxide Films Using Polynomial Neural Networks

  • Han, Seung-Soo;Song, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.195-200
    • /
    • 1998
  • Since the neural network was introduced, significant progress has been made on data handling and learning algorithms. Currently, the most popular learning algorithm in neural network training is feed forward error back-propagation (FFEBP) algorithm. Aside from the success of the FFEBP algorithm, polynomial neural networks (PNN) learning has been proposed as a new learning method. The PNN learning is a self-organizing process designed to determine an appropriate set of Ivakhnenko polynomials that allow the activation of many neurons to achieve a desired state of activation that mimics a given set of sampled patterns. These neurons are interconnected in such a way that the knowledge is stored in Ivakhnenko coefficients. In this paper, the PNN model has been developed using the plasma enhanced chemical vapor deposition (PECVD) experimental data. To characterize the PECVD process using PNN, SiO$_2$films deposited under varying conditions were analyzed using fractional factorial experimental design with three center points. Parameters varied in these experiments included substrate temperature, pressure, RF power, silane flow rate and nitrous oxide flow rate. Approximately five microns of SiO$_2$were deposited on (100) silicon wafers in a Plasma-Therm 700 series PECVD system at 13.56 MHz.

  • PDF

A Markov Decision Process (MDP) based Load Balancing Algorithm for Multi-cell Networks with Multi-carriers

  • Yang, Janghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3394-3408
    • /
    • 2014
  • Conventional mobile state (MS) and base station (BS) association based on average signal strength often results in imbalance of cell load which may require more powerful processor at BSs and degrades the perceived transmission rate of MSs. To deal with this problem, a Markov decision process (MDP) for load balancing in a multi-cell system with multi-carriers is formulated. To solve the problem, exploiting Sarsa algorithm of on-line learning type [12], ${\alpha}$-controllable load balancing algorithm is proposed. It is designed to control tradeoff between the cell load deviation of BSs and the perceived transmission rates of MSs. We also propose an ${\varepsilon}$-differential soft greedy policy for on-line learning which is proven to be asymptotically convergent to the optimal greedy policy under some condition. Simulation results verify that the ${\alpha}$-controllable load balancing algorithm controls the behavior of the algorithm depending on the choice of ${\alpha}$. It is shown to be very efficient in balancing cell loads of BSs with low ${\alpha}$.

산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구 (Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems)

  • 전상수;이경호
    • 정보보호학회논문지
    • /
    • 제32권4호
    • /
    • pp.691-708
    • /
    • 2022
  • 머신러닝과 딥러닝의 기술이 보편화되면서 산업제어시스템의 이상(비정상) 탐지 연구에도 적용이 되기 시작하였다. 국내에서는 산업제어시스템의 이상 탐지를 위한 인공지능 연구를 활성화시키기 위하여 HAI 데이터셋을 개발하여 공개하였고, 산업제어시스템 보안위협 탐지 AI 경진대회를 시행하고 있다. 이상 탐지 연구들은 대개 기존의 딥러닝 학습 알고리즘을 변형하거나 다른 알고리즘과 함께 적용하는 앙상블 학습 모델의 방법을 통해 향상된 성능의 학습 모델을 만드는 연구가 대부분 이었다. 본 연구에서는 학습 모델과 데이터 전처리(pre-processing)의 개선을 통한 방법이 아니라, 비정상 데이터를 탐지하여 라벨링 한 결과를 보정하는 후처리(post-processing) 방법으로 이상 탐지의 성능을 개선시키는 연구를 진행하였고, 그 결과 기존 모델의 이상 탐지 성능 대비 약 10%이상의 향상된 결과를 확인하였다.

결정트리 학습 알고리즘을 활용한 축구 게임 수비 NPC 제어 방법 (NPC Control Model for Defense in Soccer Game Applying the Decision Tree Learning Algorithm)

  • 조달호;이용호;김진형;박소영;이대웅
    • 한국게임학회 논문지
    • /
    • 제11권6호
    • /
    • pp.61-70
    • /
    • 2011
  • 본 논문에서는 결정트리 학습 알고리즘을 활용한 축구 게임 수비 NPC 제어 방법을 제안한다. 제안하는 방법은 실제 게임 사용자들의 이동 방향 패턴과 행동 패턴을 추출하여 결정트리학습 알고리즘에 적용한다. 그리고 학습된 결정트리를 바탕으로 NPC의 이동방향과 행동을 결정한다. 실험결과 제안하는 방법은 결정트리 학습에 시간이 다소 걸리지만, 학습된 결정트리를 바탕으로 이동방향이나 행동을 결정하는 시간은 약 0.001-0.003 ms(밀리초)가 소요되어 실시간으로 NPC를 제어할 수 있었다. 또한, 제안하는 방법은 현재 상태 정보 뿐만 아니라 이를 분석한 관계정보, 이전 상태 정보도 함께 활용하므로, 기존방법인 (Letia98)에 비해 이동방향 결정시 높은 정확도를 나타냈다.

딥러닝 알고리즘을 이용한 토마토에서 발생하는 여러가지 병해충의 탐지와 식별에 대한 웹응용 플렛폼의 구축 (A Construction of Web Application Platform for Detection and Identification of Various Diseases in Tomato Plants Using a Deep Learning Algorithm)

  • 나명환;조완현;김상균
    • 품질경영학회지
    • /
    • 제48권4호
    • /
    • pp.581-596
    • /
    • 2020
  • Purpose: purpose of this study was to propose the web application platform which can be to detect and discriminate various diseases and pest of tomato plant based on the large amount of disease image data observed in the facility or the open field. Methods: The deep learning algorithms uesed at the web applivation platform are consisted as the combining form of Faster R-CNN with the pre-trained convolution neural network (CNN) models such as SSD_mobilenet v1, Inception v2, Resnet50 and Resnet101 models. To evaluate the superiority of the newly proposed web application platform, we collected 850 images of four diseases such as Bacterial cankers, Late blight, Leaf miners, and Powdery mildew that occur the most frequent in tomato plants. Of these, 750 were used to learn the algorithm, and the remaining 100 images were used to evaluate the algorithm. Results: From the experiments, the deep learning algorithm combining Faster R-CNN with SSD_mobilnet v1, Inception v2, Resnet50, and Restnet101 showed detection accuracy of 31.0%, 87.7%, 84.4%, and 90.8% respectively. Finally, we constructed a web application platform that can detect and discriminate various tomato deseases using best deep learning algorithm. If farmers uploaded image captured by their digital cameras such as smart phone camera or DSLR (Digital Single Lens Reflex) camera, then they can receive an information for detection, identification and disease control about captured tomato disease through the proposed web application platform. Conclusion: Incheon Port needs to act actively paying.

적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어 (Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller)

  • 고재섭;최정식;김도연;정병진;강성준;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

A study on the optimal tracking problems with predefined data by using iterative learning control

  • Le, Dang-Khanh;Le, Dang-Phuong;Nam, Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1303-1309
    • /
    • 2014
  • In this paper, we present an iterative learning control (ILC) framework for tracking problems with predefined data points that are desired points at certain time instants. To design ILC systems for such problems, a new ILC scheme is proposed to produce output curves that pass close to the desired points. Unlike traditional ILC approaches, an algorithm will be developed in which the control signals are generated by solving an optimal ILC problem with respect to the desired sampling points. In another word, it is a direct approach for the multiple points tracking ILC control problem where we do not need to divide the tracking problem into two steps separately as trajectory planning and ILC controller.The strength of the proposed formulation is the methodology to obtain a control signal through learning law only considering the given data points and dynamic system, instead of following the direction of tracking a prior identified trajectory. The key advantage of the proposed approach is to significantly reduce the computational cost. Finally, simulation results will be introduced to confirm the effectiveness of proposed scheme.

Fuzzy Logic Controller Design via Genetic Algorithm

  • Kwon, Oh-Kook;Wook Chang;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.612-618
    • /
    • 1998
  • The success of a fuzzy logic control system solving any given problem critically depends on the architecture of th network. Various attempts have been made in optimizing its structure its structure using genetic algorithm automated designs. In a regular genetic algorithm , a difficulty exists which lies in the encoding of the problem by highly fit gene combinations of a fixed-length. This paper presents a new approach to structurally optimized designs of a fuzzy model. We use a messy genetic algorithm, whose main characteristics is the variable length of chromosomes. A messy genetic algorithms used to obtain structurally optimized fuzzy models. Structural optimization is regarded important before neural network based learning is switched into. We have applied the method to the exampled of a cart-pole balancing.

  • PDF

SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘 (Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem)

  • 석진욱;조성원;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF