• Title/Summary/Keyword: Learning Control Algorithm

Search Result 947, Processing Time 0.028 seconds

Self-Learning Supervisory Control of a Power Transmission System in a Construction Vehicle during Inertia Phase (건설장비용 동력전달계의 관성영역에서의 자기학습 제어기법)

  • Choi, Gil-Woo;Hahn, Jin-Oh;Hur, Jae-Woong;Cho, Young-Man;Lee, Kyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.723-729
    • /
    • 2001
  • Electro-hydraulic shift control of a vehicle automatic transmission has been predominantly carried out via an open-loop control based on numerous time-consuming calibrations. Despite remarkable success in practice, the variations of system characteristics inevitably deteriorate the performance of the tuned open-loop controller. As a result, the controller parameters need to be continuously updated in order to maintain satisfactory shift quality. This paper presents a self-learning algorithm for automatic transmission shift control in a construction vehicle during inertia phase. First, an observer reconstructs the turbine acceleration signal (impossible to measure in a construction vehicle) from the readily accessible turbine speed measurement. Then, a control algorithm based on a quadratic function of the turbine acceleration is shown to guarantee the asymptotic convergence (within a specified target bound) of the error between the actual and the desired turbine accelerations. A Lyapunov argument plays a crucial role in deriving adaptive laws for control parameters. The simulation and hardware-in-the-loop simulation (HILS) studies show that the proposed algorithm actually delivers the promise of satisfactory performance despite the system characteristics variations and uncertainties.

  • PDF

개폐식 밸브를 이용한 공압실린더의 위치제어

  • 홍지중;이정오;홍예선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.380-384
    • /
    • 1992
  • The position control of a pneumatic cylinder suing low cost on-off valves is studied. The valve control band(VCB) was proposed toget fast response and toprevent solenoid valves from unnecessary switching at the beginning of response. A learning algorithm was used to compensate the nonlinearity and complexity in mathematical modelling of pheumatic on-off controlled positioning systems. In this algorithm, the desired performance index and modified learning rate, were proposed to improvespeed and convergence of learning control. It is shown experimentally that the proposed algorithm is robust to changes of system parameters: the setting time less than 1.0 sec and the error bound of .+-. 0.1 mm can be obtained. The effects of supply pressure, size of switching valves and the effect of multiple valves are discussed, and computer simulation onthe dynamic performances of the pneumatic system is also presented.

Implementation of Self-adaptive System using the Algorithm of Neural Network Learning Gain

  • Lee, Seong-Su;Kim, Yong-Wook;Oh, Hun;Park, Wal-Seo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.453-459
    • /
    • 2008
  • The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.

The Effects of Algorithm Learning with Squeak Etoys on Middle School Students' Problem Solving Ability (Squeak Etoys 활용 알고리즘 학습이 중학생의 문제해결력에 미치는 영향)

  • Jeoung, MiYeoun;Lee, EunKyoung;Lee, YoungJun
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.170-191
    • /
    • 2008
  • Many former researchers demonstrated that algorithm learning has a positive outcome on students' problem-solving abilities. One of the methods for algorithm learning, the 'programming learning' method is highly effective. However, there are numerous constraints in schools for programming learning. This study attempts to overcome these issues. Squeak Etoys, one of the educational visual programming languages for easy and interesting learning, has been selected as a learning tool. We developed the algorithm-learning curriculum for middle school students. They were divided into a control group and an experimental group. The students learned on the basis of equal curriculum but, they used other learning tools through over a total 6 sessions. The result showed that Squeak Etoys based Algorithm learning has a positive effect on improving middle school learners' problem solving abilities, self-efficacies and logical thinking abilities. Although the students' logical thinking abilities in the experimental group are improved a lot more than the students' abilities in control group, the students' logical think abilities in the both groups are improved. Therefore, algorithm education in secondary schools are necessary. In conclusion, Squeak Etoys based Algorithm learning has a positive effect on problem solving ability and self efficacy. The developed curriculum can be applicable as a basis for study on algorithm learning and educational programming language.

Design of automatic cruise control system of mobile robot using fuzzy-neural control technique (퍼지-뉴럴 제어기법에 의한 이동형 로봇의 자율주행 제어시스템 설계)

  • 한성현;김종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1804-1807
    • /
    • 1997
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learnign architecture. It is proposed a learning controller consisting of two neural networks-fuzzy based on independent reasoning and a connecton net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

Input Signal Estimation About Controller Using Neural Networks (신경망을 이용한 제어기에 인가된 입력 신호의 추정)

  • Son Jun-Hyeok;Seo Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.495-497
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

Input signal estimation about controller using neural networks (신경망을 이용한 제어기에 인가된 입력 신호의 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.18-20
    • /
    • 2005
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And this method has been used as a learning algorithm to estimate the parameter of a neural network used for identification of the process dynamics of s signal input and signal output system and it was shown that this method offered superior capability over the conventional back propagation algorithm. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident. This paper goal estimate input signal about controller using neural networks.

  • PDF

Control of Single Propeller Pendulum with Supervised Machine Learning Algorithm

  • Tengis, Tserendondog;Batmunkh, Amar
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.15-22
    • /
    • 2018
  • Nowadays multiple control methods are used in robot control systems. A model, predictor or error estimator is often used as feedback controller to control a robot. While robots have become more and more intensive with algorithms capable to acquiring independent knowledge from raw data. This paper represents experimental results of real time machine learning control that does not require explicit knowledge about the plant. The controller can be applied on a broad range of tasks with different dynamic characteristics. We tested our controller on the balancing problem of a single propeller pendulum. Experimental results show that the use of a supervised machine learning algorithm in a single propeller pendulum allows the stable swing of a given angle.

Application of Fuzzy Algorithm with Learning Function to Nuclear Power Plant Steam Generator Level Control

  • Park, Gee-Yong-;Seong, Poong-Hyun;Lee, Jae-Young-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1054-1057
    • /
    • 1993
  • A direct method of fuzzy inference and a fuzzy algorithm with learning function are applied to the steam generator level control of nuclear power plant. The fuzzy controller by use of direct inference can control the steam generator in the entire range of power level. There is a little long response time of fuzzy direct inference controller at low power level. The rule base of fuzzy controller with learning function is divided into two parts. One part of the rule base is provided to level control of steam generator at low power level (0%∼30% of full power). Response time of steam generator level control at low power level with this rule base is shown generator level control at low power level with this rule base is shown to be shorter than that of fuzzy controller with direct inference.

  • PDF

Iterative Learning Control Algorithm for a class of Nonlinear System with External Inputs (외부입력이 존재하는 비선형 시스템의 반복학습제어 알고리즘에 관한 연구)

  • Jang, H.S.;Lim, M.S.;Lim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1278-1280
    • /
    • 1996
  • In this paper, an Iterative learning control algorithm is presented for a class of non linear system which have external inputs or disturbances. The acceleration of error signal is used to update the next control signal. It is shown that the feedback gain can be deter.ined so that the overall errors are convergent.

  • PDF