• Title/Summary/Keyword: Learning Content management system

Search Result 172, Processing Time 0.025 seconds

A Study to Improve Full - Cyber Lectures: with Focus on Instructors' Proposal (완전사이버 강의의 개선을 위한 방안: 교수자 제안을 중심으로)

  • Lee, Seung-Won
    • Journal of Digital Convergence
    • /
    • v.11 no.4
    • /
    • pp.409-414
    • /
    • 2013
  • The purpose of this study is to verify the effects of partial-cyber and full-cyber lectures and explore directions for improvement. This study compared the mean scores of course evaluation for traditional face-to-face lectures, partial-cyber lectures of blended instruction, and full-cyber lectures. Also, this study interviewed instructors of full-cyber lectures to investigate the ways to enhance the lecture quality. The findings suggest that the course evaluation scores for full-cyber university were consistently lower than those for other types of lectures for four semesters between the years of 2011 and 2012. Results also showed that mean scores of partial-cyber lectures were the same as those of face-to-face lectures. After all, class satisfaction in full-cyber courses that learning occurs in cyber space was the lowest. Instructors who taught full-cyber lectures proposed that enrollment should not be within 60 students and professional assistance should be provided for lectures exceeding 60 students. Finally, they suggested content updates through a collaborative system with professionals, instructors' efforts to enhance interaction in both online and offline contexts, and learning quantity rationalization.

Students' Perception on K-MOOC Utilizing and Academic Achievement as a Higher Education Innovation Mechanism (대학교육혁신기제로서의 K-MOOC 활용과 학습성과에 대한 학생인식조사)

  • Cho, Jin-Suk;Jeon, Young-Mee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.232-243
    • /
    • 2021
  • This study analyzed how K-MOOC was used and identify the academic achievements in higher education. The participants who completed the survey questionnaire were composed of 379 students who were in curriculum-related extra-curriculum using K-MOOC. Results show that the participation rate in individual learning activities was high, thus indicating the activities were perceived positively. In addition, students perceived positively their academic achievements of receiving, valuing, and responding in affective area, as well as synthesis and evaluation of knowledge in cognitive area. Students were also satisfied that they had no psychological burden to the credit of the course and they could take a course from another college. By contrast, platform instability, too much online content, and tedious activities in the lessons were perceived negatively. Nonetheless, the group assessment results suggested that the students taking a course related to their major had further engagement in discussions, and their academic achievement was higher. Based on the foregoing findings, the study proposed developing a subject matter with various theme, utilization plans, interaction reinforcement, and quality management by supporting instructional design strategies in order to expand the use of K-MOOC both as a general education and a major curriculum. The results obtained in this study represent baseline data that may assist in the decision making for university system and operation plan.

Analysis of Eco-Citizenship Contents Elements in Home Economics Textbooks for the Introduction of Ecological Transformation Education (생태전환교육 도입을 위한 가정과 교과서의 생태시민성 내용 요소 분석)

  • Cho, Sung Mi;Park, Mi Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.35 no.2
    • /
    • pp.1-20
    • /
    • 2023
  • The purpose of this study is to extract and analyze ecological citizenship elements in the middle school home economics textbook used in the 2015 national curriculum for the introduction of ecological transformation education in the 2022 national curriculum. As a result of the analysis, the content analysis of the ecological citizenship factor was validated by six experts who are incumbent middle school home economics teachers, and the S-CVI value was 0.97, ensuring the validity of the ecological citizenship factor analysis. The results of analyzing 242 ecological citizenship factors extracted from home economics textbooks are as follows. According to the content area of the 2015 national home economics curriculum, the 'human development and family' area had the highest presence of ecological citizenship factors followed by the 'resource management and self-reliance' area and the 'home life and safety' area. Among the categories of ecological citizenship factors, 'value⋅attitude' was the most frequent, followed by 'process⋅function' and 'knowledge⋅understanding'. For each textbook composition system, ecological citizenship elements were extracted in the order of pictures, text, activities, and supplementary materials. There was a significant variation in the number of ecological citizenship factors among publishers, indicating the importance of the textbook writers' perception, interpretation, and direction of writing. Based on these analysis results, ecological citizenship teaching and learning activities applicable to home economics education were presented. This study highlights the potential for practicing ecological citizenship education in line with the new orientation of the curriculum on ecological transformation education through home economics education. Furthermore, it provides valuable baseline data for the development and implementation of textbooks for the 2022 national curriculum.

Digital Library Interface Research Based on EEG, Eye-Tracking, and Artificial Intelligence Technologies: Focusing on the Utilization of Implicit Relevance Feedback (뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스 연구: 암묵적 적합성 피드백 활용을 중심으로)

  • Hyun-Hee Kim;Yong-Ho Kim
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.261-282
    • /
    • 2024
  • This study proposed and evaluated electroencephalography (EEG)-based and eye-tracking-based methods to determine relevance by utilizing users' implicit relevance feedback while navigating content in a digital library. For this, EEG/eye-tracking experiments were conducted on 32 participants using video, image, and text data. To assess the usefulness of the proposed methods, deep learning-based artificial intelligence (AI) techniques were used as a competitive benchmark. The evaluation results showed that EEG component-based methods (av_P600 and f_P3b components) demonstrated high classification accuracy in selecting relevant videos and images (faces/emotions). In contrast, AI-based methods, specifically object recognition and natural language processing, showed high classification accuracy for selecting images (objects) and texts (newspaper articles). Finally, guidelines for implementing a digital library interface based on EEG, eye-tracking, and artificial intelligence technologies have been proposed. Specifically, a system model based on implicit relevance feedback has been presented. Moreover, to enhance classification accuracy, methods suitable for each media type have been suggested, including EEG-based, eye-tracking-based, and AI-based approaches.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

Evaluation of an Activity-Oriented Extracurricular Science Fair (신나는 과학 놀이 마당 평가 연구)

  • Seo, Hae-Ae;Jhun, Young-Suk;Hyun, Jong-Ho;Ryu, Sung-Chul;Han, Jae-Young;Choi, Won-Ho;Kim, Hyeon-Bean;Cho, Su-Min;Ihm, Hyuk
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.3
    • /
    • pp.473-486
    • /
    • 2001
  • The study aimed to evaluate an activity-oriented extracurricular science program as informal science education through the assessment of opinions of student participants and lead-students and lead-teachers who organized the program. An 'Exciting Science Fair' was designed by science teachers and students and provided for 857 students for two days in early 1998. Students chose a course of science activities designed by different levels of student knowledge and interests. During their own science activity courses, the participating students were grouped as pair of two students and guided and facilitated by lead-students. A survey instrument was developed by researchers and asked respondents' opinions of 121 participating students, 72 lead-students, and 19 lead-teachers to the significance of program goals, degree of goal achievement, and program planning and management system before and after the program. It was found that most student participants, lead-students and lead-teachers satisfied with the efficiency of the program. However, it was recommended that the program should place more emphases on engaging student participants in science activities, strengthening scientific inquiry through activities, and increasing science content related to student daily life. It was also suggested that advertizement of the program be publicized in advance through media, an effect teaching-learning strategy for lead-students be developed, and collaboration among lead-students and lead-teachers be improved.

  • PDF

Direction of Emergency Rescue Education Based on the Experience of New 119 Paramedics for National Health Promotion (국민건강증진을 위한 응급구조학 교육의 나아갈 방향 -신임 119구급대원의 출동경험을 바탕으로-)

  • Kim, Jung-Sun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.1
    • /
    • pp.207-220
    • /
    • 2021
  • The purpose of the study is to investigate the application and utility of emergency rescue education and derive limitations, improvements and development directions of university education based on the field experience of 119 emergency medical technician(EMT)s. The research subjects were six new 119 emergency medical technician(EMT)s within three years of starting their first-aid service in the field. After conducting in-depth narrative interviews, the analysis was performed using Colaizzi method. The 82 formulated meanings were derived from significant statements. From formulated meanings, 23 themes, 4 theme clusters, 2 categories were identified. The four theme clusters were 'The effectiveness of university education', 'The limitations of university education', 'The direction of improvement in educational methodology' and 'The direction of improvement in educational contents. University education has been helpful overall, but limitations are observed at the same time, suggesting that it should be developed through the improvement of educational methodologies (i.e. problem-based learning, field case review, education through role-playing, simulation education, strengthening skill ect.) and educational content (i.e. training tailored to the field, education focused on trauma or cardiac arrest, expansion of triage education in disaster management, reinforcement of education on-site safety, education on special patients, diverse guidance and faculty for different perspectives).

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.