• Title/Summary/Keyword: Learning Agent

Search Result 457, Processing Time 0.028 seconds

Development of Intelligent Agent Systems based on Semantic Web for e-Learning (e-러닝을 위한 시멘틱웹 기반 지능형 에이전트 시스템 개발)

  • Han, Sun-Gwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.9 no.3
    • /
    • pp.121-128
    • /
    • 2006
  • This study suggested the new e-learning systems based on agent to provide an adaptable learning. In Semantic Web environment, to develop an ontology and an intelligent agent is essential for an adaptable e-learning systems. Especially, to develop a reasoning engine using analysis of learning content and learners' information can offer an effective e-learning system. Therefore, we developed an applying model to an adaptable e-learning systems and the various ontologies for Semantic Web environment. Moreover, we analyzed and developed ontologies within the framework of learning domain, a learner and interface. Further, we implemented an intelligent e-learning for applying an agent's reasoning. Through this system proposed, we suggested the new e-learning systems model for Semantic Web environment.

  • PDF

Avoidance Behavior of Small Mobile Robots based on the Successive Q-Learning

  • Kim, Min-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.164.1-164
    • /
    • 2001
  • Q-learning is a recent reinforcement learning algorithm that does not need a modeling of environment and it is a suitable approach to learn behaviors for autonomous agents. But when it is applied to multi-agent learning with many I/O states, it is usually too complex and slow. To overcome this problem in the multi-agent learning system, we propose the successive Q-learning algorithm. Successive Q-learning algorithm divides state-action pairs, which agents can have, into several Q-functions, so it can reduce complexity and calculation amounts. This algorithm is suitable for multi-agent learning in a dynamically changing environment. The proposed successive Q-learning algorithm is applied to the prey-predator problem with the one-prey and two-predators, and its effectiveness is verified from the efficient avoidance ability of the prey agent.

  • PDF

Autonomous and Asynchronous Triggered Agent Exploratory Path-planning Via a Terrain Clutter-index using Reinforcement Learning

  • Kim, Min-Suk;Kim, Hwankuk
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.181-188
    • /
    • 2022
  • An intelligent distributed multi-agent system (IDMS) using reinforcement learning (RL) is a challenging and intricate problem in which single or multiple agent(s) aim to achieve their specific goals (sub-goal and final goal), where they move their states in a complex and cluttered environment. The environment provided by the IDMS provides a cumulative optimal reward for each action based on the policy of the learning process. Most actions involve interacting with a given IDMS environment; therefore, it can provide the following elements: a starting agent state, multiple obstacles, agent goals, and a cluttered index. The reward in the environment is also reflected by RL-based agents, in which agents can move randomly or intelligently to reach their respective goals, to improve the agent learning performance. We extend different cases of intelligent multi-agent systems from our previous works: (a) a proposed environment-clutter-based-index for agent sub-goal selection and analysis of its effect, and (b) a newly proposed RL reward scheme based on the environmental clutter-index to identify and analyze the prerequisites and conditions for improving the overall system.

Comparison of Reinforcement Learning Activation Functions to Improve the Performance of the Racing Game Learning Agent

  • Lee, Dongcheul
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1074-1082
    • /
    • 2020
  • Recently, research has been actively conducted to create artificial intelligence agents that learn games through reinforcement learning. There are several factors that determine performance when the agent learns a game, but using any of the activation functions is also an important factor. This paper compares and evaluates which activation function gets the best results if the agent learns the game through reinforcement learning in the 2D racing game environment. We built the agent using a reinforcement learning algorithm and a neural network. We evaluated the activation functions in the network by switching them together. We measured the reward, the output of the advantage function, and the output of the loss function while training and testing. As a result of performance evaluation, we found out the best activation function for the agent to learn the game. The difference between the best and the worst was 35.4%.

Multiple Behavior s Learning and Prediction in Unknown Environment

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1820-1831
    • /
    • 2010
  • When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.

Reinforcement learning multi-agent using unsupervised learning in a distributed cloud environment

  • Gu, Seo-Yeon;Moon, Seok-Jae;Park, Byung-Joon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.192-198
    • /
    • 2022
  • Companies are building and utilizing their own data analysis systems according to business characteristics in the distributed cloud. However, as businesses and data types become more complex and diverse, the demand for more efficient analytics has increased. In response to these demands, in this paper, we propose an unsupervised learning-based data analysis agent to which reinforcement learning is applied for effective data analysis. The proposal agent consists of reinforcement learning processing manager and unsupervised learning manager modules. These two modules configure an agent with k-means clustering on multiple nodes and then perform distributed training on multiple data sets. This enables data analysis in a relatively short time compared to conventional systems that perform analysis of large-scale data in one batch.

The Study about Agent to Agent Communication Data Model for e-Learning (협력학습 지원을 위한 에이전트 간의 의사소통 데이터 모델에 관한 연구)

  • Han, Tae-In
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.36-45
    • /
    • 2011
  • An agent in collaborative e-learning has independent function for learners in any circumstance, status and task by the reasonable and general means for social learning. In order to perform it well, communication among agents requires standardized and regular information technology method. This study suggests data model as a communication tool for various agents. Therefore this study shows various agents types for collaborative learning, designation of rule for data model that enable to communicate among agents and data element of agent communication data model. A multi-agent e-learning system using like this standardized data model should able to exchange the message that is needed for communication among agents who can take charge of their independent tasks. This study should contribute to perform collaborative e-learning successfully by the application of communication data model among agents for social learning.

A Study of Collaborative and Distributed Multi-agent Path-planning using Reinforcement Learning

  • Kim, Min-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, an autonomous multi-agent path planning using reinforcement learning for monitoring of infrastructures and resources in a computationally distributed system was proposed. Reinforcement-learning-based multi-agent exploratory system in a distributed node enable to evaluate a cumulative reward every action and to provide the optimized knowledge for next available action repeatedly by learning process according to a learning policy. Here, the proposed methods were presented by (a) approach of dynamics-based motion constraints multi-agent path-planning to reduce smaller agent steps toward the given destination(goal), where these agents are able to geographically explore on the environment with initial random-trials versus optimal-trials, (b) approach using agent sub-goal selection to provide more efficient agent exploration(path-planning) to reach the final destination(goal), and (c) approach of reinforcement learning schemes by using the proposed autonomous and asynchronous triggering of agent exploratory phases.

An Intelligent Web based e-Learning Multi Agent System (웹기반 이러닝 멀티에이전트 시스템)

  • Cho, Young-Im
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • In this paper, we developed an intelligent web based e-learning system based on multi agents. To do development of the system, we applied an inclination test that is based on the education theory to do grouping the desirable e-learning community. The proposed system, Intelligent Web based e-learning Multi Agent System (IMAS), is used the multi agents paradigm including learning manner by neural network for grouping of e-learning community and a new distributed multi agent framework proposed here.

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.