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Abstract

An intelligent distributed multi-agent system (IDMS) using reinforcement learning (RL) is a challenging and intricate problem

in which single or multiple agent(s) aim to achieve their specific goals (sub-goal and final goal), where they move their states in

a complex and cluttered environment. The environment provided by the IDMS provides a cumulative optimal reward for each

action based on the policy of the learning process. Most actions involve interacting with a given IDMS environment; therefore, it

can provide the following elements: a starting agent state, multiple obstacles, agent goals, and a cluttered index. The reward in

the environment is also reflected by RL-based agents, in which agents can move randomly or intelligently to reach their

respective goals, to improve the agent learning performance. We extend different cases of intelligent multi-agent systems from

our previous works: (a) a proposed environment-clutter-based-index for agent sub-goal selection and analysis of its effect, and

(b) a newly proposed RL reward scheme based on the environmental clutter-index to identify and analyze the prerequisites and

conditions for improving the overall system.

Index Terms: Intelligent Distributed Multi-Agent System (IDMS), Reinforcement Learning (RL), Sub-Goal. Environment-

Clutter-Index

I. INTRODUCTION

An intelligent multi-agent distributed system (IMDS) is a

monitoring system that achieves an agent’s tasks in a geo-

graphically and computationally distributed environment. An

IMDS has multiple agents and common or conflicting tasks

for agent path planning [1,2]. It can provide flexibility and

extensibility with some of the learned data for monitoring

applications [3]. Such an intelligent system generally adopts

the use of each of the agent-learning processes for autono-

mous path planning towards its respective goals (destina-

tions). The system also requires the development of a

computational multi-agent learning process in a large clut-

tered environment, where the agents have limited capabilities

for path planning, and only have access to partially local

information (knowledge) of their environment depending on

the distributed computing node [3,4]. In such a large, clut-

tered environment, an agent can move randomly towards its

goal. It is desirable for the agent to be intelligently equipped

to move and avoid obstacles in the environment, and to be

able to autonomously learn the shortest path planning to col-

lect environmental knowledge in a minimum amount of time

and steps [1,5].

IMDS is also provided by reinforcement-learning-based
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autonomous multi-agent path planning for monitoring the

environmental infrastructure and resources in the agent com-

putational learning process [6]. Agent path planning based

on reinforcement learning (RL) with multi-agent exploration

enables the evaluation of a cumulative reward for every

action and step. Optimized knowledge for the next available

action is repeatedly needed by the learning process accord-

ing to a learning policy [1,7]. RL is a machine learning algo-

rithm, which is normally based on a reward provided by the

environment in a state transition for an agent learning pro-

cess [8-11]. The learning algorithm requires a system capable

of autonomous acquisition and incorporation of knowledge [9].

It continuously improves and becomes more efficient as the

learning process from an agent’s exploratory experience to

optimize an agent’s learning performance in a time-varying

environment [12,13]. Intelligent machine learning methods

also require the study of computer algorithms to automati-

cally improve the agent learning performance of path plan-

ning [14]. This scheme can attempt to determine a policy

and learn a maximizing cumulative reward for a faster opti-

mal path [15,16]. RL is typically used in multi-agent-based

monitoring systems to solve the problem of learning strate-

gies using an autonomous agent [7,17,18]. It has emerged as

an area of memory capacity and computational power since

the start of the use of learning algorithms [19] in multi-agent

systems. RL is an intelligent learning scheme for dynamic

environments with complex challenges, such as slow learn-

ing speed and hardware limitations. However, it has a prob-

lem that has been diminished owing to ongoing hardware

improvements. The proposed method has been used to

develop time-varying [12,20] and real-time applications [21]

such as mobile robotics. The RL-based multi-agent approach

can counter many different problems, such as machine learn-

ing, to solve multi-agent coordination and collaboration

[22,23].

A. Contributions and Objectives

In this study, we focus on a multi-agent system with col-

laborative agents based on the proposed schemes using rein-

forcement-learning-based agent path planning. The scheme

adopts and extends prior studies [1,7,24] to demonstrate the

agent learning process in a distributed environment with one

or more sub-goals, where multiple agents have different final

goals (destinations) for agent path planning. In prior studies,

RL was mainly used as the agent learning process to self-

improve learning performance [7,10,14,23]. RL is also the

study of machine learning algorithms to automatically

attempt and find maximizing cumulative rewards for faster

optimal path planning in terms of value and policy networks.

The scheme is based on a sharing-information scheme,

which is a communication scheme for an agent learning pro-

cess [1,2,7]. Single and multi-agents can share their path

exploration information with other agents supervised by the

RL-based reward learning method on the existing local

memory node. Without the intelligent scheme, the agent does

not have the capabilities and resources in an entire given

large terrain for learning performance because the initial ran-

dom exploration becomes challenging and relatively noncon-

vergent. However, collaborative agent path planning, depending

on the scheme of sharing information, can improve learning

performance in a given large terrain. In addition, a new sub-

goal-based RL reward function in an environmental clutter-

index is proposed to improve the agent learning perfor-

mance. In particular, the contributions of our research are (a)

the approach of agent sub-goal selection to reduce smaller

agent steps toward the given goal, where these agents can

geographically explore the given environment, and (b) the

approach as part of a newly proposed reinforcement-learn-

ing-based reward scheme for the autonomous and asynchro-

nous triggering of agent exploratory phases.

B. Organization

Section 2 describes the system architecture. Sections 3 and

4 present our proposed method and the experimental results

obtained using the proposed method, respectively. Section 5

presents conclusions and future work.

II. SYSTEM MODEL AND METHODS

The overall architecture shown in Fig. 1 is a clutter-index-

based scheme based on a hybrid P2P [6,10]. The global envi-

ronment (master node) initially assigns collaborating and

monitoring agents in the terrain, which are distributed to the

slave nodes geographically and computationally. Each col-

laborating agent that attempts exploration takes trials for

synchronized real-time situational understanding [1]. The

agents have awareness and decision-making to achieve their

sub-goals and/or final goal (destination) via distributed rein-

forcement reward-based learning. The approach based on an

agent sub-goal selection scheme in a multi-agent skill has

been adopted from previous studies [1,7].

The multi-agent has limited resources and incomplete

knowledge regarding when an agent performs exploration to

find its goals (sub-goal and final goal) in a distributed envi-

ronment. The agent lacks the capabilities and resources

required to span the large terrain of its environment [1,15].

All agents distributed in a given large terrain, however, have

capabilities to share the needed information over a network

[16]. A given agent that surrounds neighboring agents does

not need to run on the same exploring node. Each agent also

does not have prior knowledge of the nodes on which other

agents are running when communicating [1,25-27].
https://doi.org/10.56977/jicce.2022.20.3.181 182



Autonomous and Asynchronous Triggered Agent Exploratory Path-planning Via a Terrain Clutter-index using Reinforcement Learning
A. System Process and Structure

Fig. 2 shows the overall system diagram for a clutter-

index-based technique using agent sub-goal selection [28,

29] in clutter-index multi-agent and goal system. Agents

involved with sub-goal(s) are selected by the global environ-

ment for using a clutter-index scheme.

This scheme can automatically and asynchronously trigger

or switch between agent exploratory trials. In particular, each

agent should start its exploratory path planning asynchro-

nously and immediately after the multi-agent finishes the

exploratory trials toward their sub-goals for overall agent

learning performance.

B. Environment-Clutter-Index Node

There is a large terrain with different positioning resources

and obstacles, according to their computationally coordi-

nated environment. Fig. 3 shows two different sample mazes

(8 × 12) that have a single or multiple sub-goals in the case

of computing nodes. An agent can move to reach its goal

(destination) in a computing environment via its sub-goal (s)

to each portion. ▩ denotes obstacles, A denotes an agent, S1

and S2 denote sub-goals, and D denotes the final goal (desti-

nation).

Fig. 4 shows agent path planning, where the agent can

move in only 4-neighbor other directions, namely up, down,

left, and right. In this case, a cluttered index value can be

transferred to the master node to share the information with

any other agent in the task for the next exploration trials.

Agent (A) can be enclosed by obstacles and boundaries. In

the case scenario shown in Fig. 4, the agent can also move in

the downward direction to move to the next available posi-

tion

The proposed scheme using clutter-index value, which is

described in Figs. 5 and 6, requires padding of the agent

environmental terrain with obstacles and boundaries. The

scheme has the clutter-index depending on the obstacles. The

obstacles exist in the vicinity and neighborhood of an agent’s

position on the terrain. In this scheme, an agent does not dis-

tinguish between obstacles and padded boundaries. As shown

in Fig. 5, a clutter-index value in scenario A (four directions)

is derived from several obstacles and boundaries with an

Fig. 1. Overall Hybrid Architecture (P2P / Master-Slave)

Fig. 2. Diagram of Clutter-Index-Based with RL-Based Reward scheme

Fig. 3. Initial Real Terrain for Clutter-Index Value with Agent, Obstacle, Sub-

Goal, and Final Destination 

Fig. 4. Case of Scenarios with Obstacles, Boundaries, and Direction in case

of Obstacle and Border
183 http://jicce.org
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enclosed position in an environment. Each clutter-index

value is defined as four possible directions (up, down, right,

and left) to move the next available position by an agent.

Otherwise, if an agent could take eight possible directions

(above four directions and Up-right, Up-left, Down-right,

and Down-left) to move the next available, a clutter-index

value would be determined by eight possible directions, as in

scenario B in Fig. 5. In the proposed method, we generally

use scenario A for the agent learning process.

C. Equation and Scheme

Here, a new policy equation is reflected by a clutter-index-

based reward. It is expanded from the previous study [1,10],

and the equation proposed with the reinforcement learning

scheme is given below:

(1)

The equation is used to determine the next position when

an agent moves in its environment. It has five terms, as fol-

lows. The first is the repelling term derived from obstacles

that are found by agent path planning. The second term is

the term attracting agents to their given destinations. The

third term denotes the visited frequency (used in learning),

and the fourth is a reward assigned by the global environ-

ment. The last term can help boost the agent path planning

with environment-clutter-index values. As part of the evalua-

tion, the function is defined by the number of obstacles and

boundaries as well as the total number of available free

directions in which an agent can move. The agent policy is

to be learned as a function of agent positions in the comput-

ing node. In the proposed new scheme based on reinforce-

ment-learning-based reward with clutter-index-based values,

multiple agents can explore the next position to reach their

final goal (destination) using the proposed clutter-index-

based scheme.

Fig. 6 describes three agent learning steps; (1) creating a

clutter-index table, (2) placing index values in the table

during agent path planning in the first random trial, and (3)

updating its clutter-index values when the agent explores its

environment to reach its final goal (destination) via its single

or multiple sub-goal (s).

III. RESULTS

A. Case of One Single Sub-Goal based on Clutter-
Index Scheme

Here, we set the terrain and obstacle positions as experi-

mental factors. The two input mazes had identical placement

of resources and obstacles. Only one agent is used to try to

find a single sub-goal; then, it can start exploring to find its

final goal (destination). As shown in Fig. 7, the clutter-index

table created by an agent’s initial random exploration has

different learned clutter-index values in a complex and clut-

tered environment. The clutter-index values can be evaluated

while the agent (A) explores to reach its sub-goal (S). The

Fig. 5. Case of Scenario in Clutter-Index Values with Possible Directions

(Left: A, Right: B)

Fig. 6. Flow Chart of Agent Exploratory Trials Overview.

(Note: Steps of the environmental clutter-index value)

Fig. 7. Clutter-index Values Discovered during the Agent (A) Path-Planning

in the First Random-Exploration Trial to the Sub-Goal (S)
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status of the table needs to be continuously updated during

the exploratory trials until the agent reaches its sub-goal and

final goal (destination).

As shown in Fig. 8, agent (A) is already discovered/

defined with clutter-index values from the first random trial.

After the agent random exploration, the grey positions in the

table are new clutter-index values discovered/updated towards

its sub-goal. Although the agent learns some clutter-index

values in the first random trial, the index values should be

continuously defined and optimized by the agent learning

process until the agent path planning reaches its final goal

(destination).

B. Case of Two Different Sub-Goals based on Clut-
ter-Index Scheme

As shown in Figs. 9 and 10, we set the different scenarios

as follows: A denotes an agent, S1 and S2 denote two sub-

goals, and D denotes the final goal (destination). S1 and S2

are controlled by the same computing node, but in different

positions. The sub-goals (S1 and S2) have different clutter-

index values; as such, S1 has a free index value (0), where

there is no obstacle or boundary surrounding the sub-goal,

while S2 has a cluttered index value (0.75), where there are

two obstacles and one boundary to enclose the sub-goal. The

learning performance of an agent differs depending on how

the clutter-index value in the environment is optimized. The

clutter-index value tables are learned by an agent (A) to the

destination (D) via the sub-goals (S1 and S2). The agent (A)

discovers/defines the clutter-index values in its first random

trial; then, it can continuously try to discover/update the

clutter-index values to find the best-optimized values during

its exploratory trials towards its goal(s) (destination). It cor-

rectly selects the first sub-goal (S1) with the overall learning

performance because S1 has a lower clutter-index value. Fig.

10 shows that the agent selects another sub-goal (S2) after

its intelligent exploratory path planning. The clutter-index

values are discovered/updated by the agent learning explora-

tion until the goal is reached.

According to the experiments, we present and compare the

experimental results with different sub-goals for agent learn-

ing performance. The agent runs to migrate one node in

search of its sub-goal(s) or final goal (destination) to the dif-

ferent positions of an obstacle, initially unknown to the

agent. Some of the positions of obstacles are discovered or

collected into environmental knowledge during the agent

learning exploratory trials using a new clutter-index value

scheme toward the goals.

C. Reward-based Clutter-Index Scheme: 
Single Sub-Goal

Fig. 11. shows the relationship between the total number

of steps versus the total number of trials that an agent takes

Fig. 8. Clutter-Index Values Discovered during the Agent (A) Path-Planning

in the Exploratory Trials to the Sub-Goal and Final Goal (Destination).

Fig. 9. Clutter-Index Values Discovered during the Agent (A) Path-Planning in

the First Random-Exploration Trial to the Sub-Goal (S1).

Fig. 10. Clutter-Index Values Discovered during the Agent (A) Path-

Planning in the First Random-Exploration Trial to the Sub-Goal (S2).
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to reach its final goal (destination) via one sub-goal, while

using agent path planning with the proposed clutter-index-

based reward scheme based on RL. In other words, the agent

can take a smaller number of steps to reach its final goal

(destination) with the proposed clutter-index-based reward

scheme relative to the case where a clutter-index-based

reward scheme is used.

It also uses automatic and asynchronous triggered agent

exploratory trials. The results in Fig. 11 show the different

plots of the effect of the environmental clutter-index in the

case of an agent automatically and asynchronously triggering

an exploratory phase to improve agent learning performance.

These figures also show the number of trials required by the

agent learning process to reach the final goal (destination)

via a single sub-goal.

D. Reward-based Clutter-Index Scheme: 
Different Sub-Goals

There are additional experimental results for the proposed

clutter-index-based reinforcement reward scheme via two

selected sub-goals, with a comparison of the agent learning

performance. In this scenario, agents can select each sub-

goal in a complex and cluttered part of the environment with

a proposed clutter-index-based reward scheme. As shown in

Fig. 12, the two different sub-goals considered in the case

scenario are located at the same node but at different posi-

tions in the terrain. The two sub-goals (S1 and S2) have dif-

ferent clutter-index values; S1 has a free index value (0) and

S2 has a clutter-index value (0.75). Fig. 12 shows that each

sub-goal (S1 or S2) provides the minimum number of steps

in the agent exploratory trials to reach its final goal (destina-

tion) in comparison with using RL with a clutter-index-based

reward scheme. Therefore, the agent finally chooses sub-

goal (S1) for the minimum number of exploratory steps and

better results for the agent learning process and system per-

formance.

IV. DISCUSSION AND CONCLUSIONS

The contributions of this research are the analysis and

development of a multi-agent architecture performance and a

new reinforcement learning reward, where an agent deduces

the next position to reach its final destination using a clutter-

index-based scheme on the overall system performance and

the agent learning process through path planning. Each of

the agents begins its exploratory trials asynchronously by

following the agent learning steps: Step A: globally initialize

and create a clutter-index value table; Step B: Randomly

place all index values while exploring agent path planning;

Step C: Discover and update the index values from the sec-

ond exploratory trial until the agent reaches its final goal

(destination) via the sub-goal (s). The experimental result

shows that an agent should take an environment clutter-index

using sub-goal selection to minimize the total number of

learning steps. The agent also needs to select a new agent

environment clutter-index-based scheme with RL-based

reward for improving the agent learning performance.

Future work includes further analysis of optimized sub-

goal selection in more realistic directions to eventually

improve the self-play multi-agent learning scheme of high

performance, followed by collaboration and competition in

the intelligent multi-agent learning process. The work will

additionally study the acquisition case of bad knowledge,

with single or multiple agents acquiring and inheriting non-

useful knowledge to collaborate with other agents in a dis-

tributed multi-agent environment.
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Fig. 11. Steps (Y) vs Trials (X) - Agent, Sub-goal, and Final Goal

(Destination) (Note: With Clutter-Index-based vs Without Clutter-Index-

based).

Fig. 12. Steps (Y) vs Trials (X) - Agent, Sub-Goal (S1, S2), and Final Goal

(Destination) (Note: Agent has two different sub-goals, S1 has clutter-index

value (0) and S2 has clutter-index value (0.75)).
https://doi.org/10.56977/jicce.2022.20.3.181 186



Autonomous and Asynchronous Triggered Agent Exploratory Path-planning Via a Terrain Clutter-index using Reinforcement Learning
REFERENCES

[ 1 ] M. -S. Kim, “A study of collaborative and distributed multi-agent

path-planning using reinforcement learning,” Journal of The Korea

Society of Computer and Information, vol. 26, no. 3, pp. 9-17, Mar.

2021. DOI: 10.9708/jksci.2021.26.03.009.

[ 2 ] D. B. Megherbi, M. Kim, and M. Madera, “A study of collaborative

distributed multi-goal and multi-agent based systems for large

critical key infrastructures and resources (CKIR) dynamic

monitoring and surveillance,” in IEEE International Conference on

Technologies for Homeland Security, Waltham: MA, USA, pp. 687-

692, 2013. DOI: 10.1109/THS.2013.6699087.

[ 3 ] Y. Bicen and F. Aras, “Intelligent condition monitoring platform

combined with multi-agent approach for complex systems,” in 2014

IEEE Workshop on Environmental, Energy, and Structural

Monitoring Systems Proceedings, Naples, Italy, pp. 1-4, 2014. DOI:

10.1109/EESMS.2014.6923283.

[ 4 ] M. Saim, S. Ghapani, W. Ren, K. Munawar, and U. M. Al-Saggaf,

“Distributed average tracking in multi-agent coordination: extensions

and experiments,” IEEE Systems Journal, vol. 12, no. 3, pp. 2428-

2436, Apr. 2018. DOI: 10.1109/JSYST.2017.2685465.

[ 5 ] D. B. Megherbi and V. Malaya, “A hybrid cognitive/reactive

intelligent agent autonomous path planning technique in a

networked-distributed unstructured environment for reinforcement

learning,” The Journal of Supercomputing, vol. 59, no. 3, pp. 1188-

1217, Dec. 2012. DOI: 10.1007/s11227-010-0510-3.

[ 6 ] Z. Li, L. Gao, W. Chen, and Y. Xu, “Distributed adaptive

cooperative tracking of uncertain nonlinear fractional-order multi-

agent systems,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no.

1, pp. 292-300, Jan. 2020. DOI: 10.1109/JAS.2019.1911858.

[ 7 ] D. B. Megherbi and M. Kim, “A hybrid P2P and master-slave

cooperative distributed multi-agent reinforcement learning system

with asynchronously triggered exploratory trials and clutter-index-

based selected sub-goals,” in 2016 IEEE International Conference

on Computational Intelligence and Virtual Environments for

Measurement Systems and Applications (CIVEMSA), Budapest,

Hungary, pp. 1-6, 2016. DOI: 10.1109/CIVEMSA.2016.7524249.

[ 8 ] H. Lee and S. W. Cha, “Reinforcement learning based on equivalent

consumption minimization strategy for optimal control of hybrid

electric vehicles,” IEEE Access, vol. 9, pp. 860-871, 2021. DOI:

10.1109/ACCESS.2020.3047497.

[ 9 ] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement

learning: a selective overview of theories and algorithms,” in

Handbook of Reinforcement Learning and Control. Studies in

Systems, Decision and Control, vol. 325. Springer, Cham, 2021.

[10] J. B. Kim, H. -K. Lim, C. -M. Kim, M. -S. Kim, Y. -G. Hong, and Y.

-H. Han, “Imitation reinforcement learning-based remote rotary

inverted pendulum control in openflow network,” IEEE Access, vol.

7, pp. 36682 - 36690, Mar. 2019. DOI: 10.1109/

ACCESS.2019.2905621.

[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern

Approach, 4th ed. Prentice Hall, 2021.

[12] J. Blumenthal, D. B. Megherbi, and R. Lussier, “Unsupervised

machine learning via Hidden Markov Models for accurate clustering

of plant stress levels based on imaged chlorophyll fluorescence

profiles & their rate of change in time,” Computers and Electronics

in Agriculture, vol. 174, Jul. 2020. DOI: 10.1016/

j.compag.2019.105064.

[13] D. Xu and T. Ushio, “On stability of consensus control of discrete-

time multi-agent systems by multiple pinning agents,” IEEE Control

Systems Letters, vol. 3, no. 4, pp. 1038-1043, Oct. 2019. DOI:

10.1109/LCSYS.2019.2920207.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, MIT press, 2018.

[15] M. Madera and D. B. Megherbi, “An interconnected dynamical

system composed of dynamics-based reinforcement learning agents

in a distributed environment: A case study,” in Proceedings of IEEE

International Conference on Computational Intelligence for

Measurement Systems and Applications, Tianjin, China, pp. 63-68,

2012. DOI: 10.1109/CIMSA.2012.6269597.

[16] J. C. Bol and J. Leiby, “Status motives and agent-to-agent

information sharing: how evolutionary psychology shapes agents’

Responses to Control System Design,” AAA 2016 Management

Accounting Section (MAS) Meeting Paper, Aug. 2015. DOI:

10.2139/ssrn.2645804.

[17] H. S. AI-Dayaa and D. B. Megherbi, “Reinforcement learning

technique using agent state occurrence frequency with analysis of

knowledge sharing on the agent’s learning process in multi-agent

environments,” The Journal of Supercomputing, vol. 59, no. 1, pp.

526-547, Jun. 2010. DOI: 10.1007/s11227-010-0451-x.

[18] H. S. Al-Dayaa and D. B. Megherbi, “Towards a multiple-lookahead-

levels reinforcement-learning technique and its implementation in

integrated circuits,” The Journal of Supercomputing, vol. 62, no. 1,

pp. 588-615, Jan. 2012. DOI: 10.1007/s11227-011-0738-6.

[19] Y. Duan, N. Wang, and J. Wu, “Minimizing training time of

distributed machine learning by reducing data communication,”

IEEE Transactions on Network Science and Engineering, vol. 8, no.

2, pp. 1802-1814, Apr. 2021. DOI: 10.1109/TNSE.2021.3073897.

[20] W. Wang, W. Zhang, C. Yan, and Y. Fang, “Distributed adaptive

bipartite time-varying formation control for heterogeneous unknown

nonlinear multi-agent systems,” IEEE Access, vol. 9, pp. 52698-

52707, Mar. 2021. DOI: 10.1109/ACCESS.2021.3068966.

[21] D. Bertsekas, “Multiagent reinforcement learning: Rollout and policy

iteration,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp.

249-272, Feb. 2021. DOI: 10.1109/JAS.2021.1003814.

[22] X. Gan, H. Guo, and Z. Li, “A new multi-agent reinforcement

learning method based on evolving dynamic correlation matrix,”

IEEE Access, vol. 7, pp. 162127-162138, Oct. 2019. DOI: 10.1109/

ACCESS.2019.2946848.

[23] D. B. Megherbi and M. Kim, “A collaborative distributed multi-

agent reinforcement learning technique for dynamic agent shortest

path planning via selected sub-goals in complex cluttered

environments,” in 2015 IEEE International Multi-Disciplinary

Conference on Cognitive Methods in Situation Awareness and

Decision, Orlando: FL, USA, pp. 118-124, 2015. DOI: 10.1109/

COGSIMA.2015.7108185.

[24] Megherbi D. B., Malaya, ”A hybrid cognitive/reactive intelligent

agent autonomous path planning technique in a networked-

distributed unstructured environment for reinforcement learning”,

The Journal of Supercomputing, Vol. 59, Issue 3, p 1188-121,

2012,https://doi.org/10.1007/s11227-010-0510-3.

[25] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint

optimization of multi-UAV target assignment and path planning

based on multi-agent reinforcement learning,” IEEE Access, vol. 7,

pp. 146264-146272, Sep. 2019. DOI: 10.1109/ACCESS.2019.

2943253.

[26] L. Canese, G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, D. Giardino,

M. Re, and S. Spanò, “Multi-agent reinforcement learning: A review

of challenges and applications,” Applied Science, vol. 11, no. 11, p.

4948, May. 2021. DOI: 10.3390/app11114948.

[27] S. Zheng and H. Liu, “Improved multi-agent deep deterministic

policy gradient for path planning-based crowd simulation,” IEEE

Access, vol. 7, pp. 147755-147770, Oct. 2019. DOI: 10.1109/

ACCESS.2019.2946659.
187 http://jicce.org



J. lnf. Commun. Converg. Eng. 20(3): 181-188, Sep. 2022 
[28] B. Brito, M. Everett, J. P. How, and J. Alonso-Mora, “Where to go

next: Learning a subgoal recommendation policy for navigation in

dynamic environments,” IEEE Robotics and Automation Letters, vol.

6, no. 3, pp. 4616-4623, Jul. 2021. DOI: 10.1109/LRA.2021.

3068662.

[29] C. Liu, F. Zhu, Q. Liu, and Y. Fu, “Hierarchical reinforcement

learning with automatic sub-goal identification,” IEEE/CAA Journal

of Automatica Sinica, vol. 8, no. 10, pp. 1686-1696, Oct. 2021. DOI:

10.1109/JAS.2021.1004141.

Min-Suk Kim

received his M.S. in Telecommunication and Networks from the University of Pittsburgh, USA, in 2010. He also received a

Ph.D. in Electrical and Computer Engineering from the University of Massachusetts Lowell, USA, in 2016. He was a senior

engineer at the Electronics and Telecommunications Research Institute (ETRI) from 2016 to 2020. Since 2020, he has

been an assistant professor with the Department of Human Intelligence and Robot Engineering at Sangmyung University,

Cheonan, Korea. His research involves Reinforcement Learning, Deep Learning, Edge Computing and Centralized Cloud

Computing.

Hwankuk Kim

received his PhD in Information Security from Korea University, Korea, in 2017. He received the B.S. and M.S. degrees in

Computer Science and Computer Engineering from Korea Aerospace University in 1998 and 2000, respectively. He is

currently an assistant professor at the Department of Information Security Engineering at Sangmyung University. He

worked as an Associate Research Engineer at ETRI (Electronics and Telecommunications Research Institute) from 2002

to 2006, and a Manager for Cyber Security Research Team at KISA (Korea Internet and Security Agency) from 2007 to

2020. His research interests include 5G / 6G network security, software vulnerability analysis, IoT security, and security

data analysis.
https://doi.org/10.56977/jicce.2022.20.3.181 188


