• Title/Summary/Keyword: Learning &

Search Result 35,134, Processing Time 0.057 seconds

Understanding the Artificial Intelligence Business Ecosystem for Digital Transformation: A Multi-actor Network Perspective (디지털 트랜스포메이션을 위한 인공지능 비즈니스 생태계 연구: 다행위자 네트워크 관점에서)

  • Yoon Min Hwang;Sung Won Hong
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.125-141
    • /
    • 2019
  • With the advent of deep learning technology, which is represented by AlphaGo, artificial intelligence (A.I.) has quickly emerged as a key theme of digital transformation to secure competitive advantage for businesses. In order to understand the trends of A.I. based digital transformation, a clear comprehension of the A.I. business ecosystem should precede. Therefore, this study analyzed the A.I. business ecosystem from the multi-actor network perspective and identified the A.I. platform strategy type. Within internal three layers of A.I. business ecosystem (infrastructure & hardware, software & application, service & data layers), this study identified four types of A.I. platform strategy (Tech. vertical × Biz. horizontal, Tech. vertical × Biz. vertical, Tech. horizontal × Biz. horizontal, Tech. horizontal × Biz. vertical). Then, outside of A.I. platform, this study presented five actors (users, investors, policy makers, consortiums & innovators, CSOs/NGOs) and their roles to support sustainable A.I. business ecosystem in symbiosis with human. This study identified A.I. business ecosystem framework and platform strategy type. The roles of government and academia to create a sustainable A.I. business ecosystem were also suggested. These results will help to find proper strategy direction of A.I. business ecosystem and digital transformation.

A Comparative Study on Reservoir Level Prediction Performance Using a Deep Neural Network with ASOS, AWS, and Thiessen Network Data

  • Hye-Seung Park;Hyun-Ho Yang;Ho-Jun Lee; Jongwook Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.67-74
    • /
    • 2024
  • In this paper, we present a study aimed at analyzing how different rainfall measurement methods affect the performance of reservoir water level predictions. This work is particularly timely given the increasing emphasis on climate change and the sustainable management of water resources. To this end, we have employed rainfall data from ASOS, AWS, and Thiessen Network-based measures provided by the KMA Weather Data Service to train our neural network models for reservoir yield predictions. Our analysis, which encompasses 34 reservoirs in Jeollabuk-do Province, examines how each method contributes to enhancing prediction accuracy. The results reveal that models using rainfall data based on the Thiessen Network's area rainfall ratio yield the highest accuracy. This can be attributed to the method's accounting for precise distances between observation stations, offering a more accurate reflection of the actual rainfall across different regions. These findings underscore the importance of precise regional rainfall data in predicting reservoir yields. Additionally, the paper underscores the significance of meticulous rainfall measurement and data analysis, and discusses the prediction model's potential applications in agriculture, urban planning, and flood management.

Development and application of SW·AI education program for Digital Sprout Camp

  • Jong Hun Kim;Jae Guk Shin;Seung Bo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • To foster the core talents of the future, the development of diverse and substantial SW·AI education programs is required, and a systematic system that can assist public education in SW and AI must be established. In this study, we develop and combine SW·AI education modules to construct a SW and AI education program applicable to public education. We also establish a systematic education system and provide sustainable SW·AI education to elementary, middle, and high school students through 'Job's Garage Camp' based on various sharing platforms. By creating a sustainable follow-up educational environment, students are encouraged to continue their self-directed learning of SW and AI. As a result of conducting a pre-post survey of students participating in the 'Job's Garage Camp', the post-survey values improved compared to the pre-survey values in all areas of 'interest', 'understanding and confidence', and 'career aspirations'. Based on these results, it can be confirmed that students had a universal positive perception and influence on SW and AI. Therefore, if the operation case of 'Job's Garage Camp' is improved and expanded, it can be presented as a standard model applicable to other SW and AI education programs in the future.

Verification Test of High-Stability SMEs Using Technology Appraisal Items (기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증)

  • Jun-won Lee
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.79-96
    • /
    • 2018
  • This study started by focusing on the internalization of the technology appraisal model into the credit rating model to increase the discriminative power of the credit rating model not only for SMEs but also for all companies, reflecting the items related to the financial stability of the enterprises among the technology appraisal items. Therefore, it is aimed to verify whether the technology appraisal model can be applied to identify high-stability SMEs in advance. We classified companies into industries (manufacturing vs. non-manufacturing) and the age of company (initial vs. non-initial), and defined as a high-stability company that has achieved an average debt ratio less than 1/2 of the group for three years. The C5.0 was applied to verify the discriminant power of the model. As a result of the analysis, there is a difference in importance according to the type of industry and the age of company at the sub-item level, but in the mid-item level the R&D capability was a key variable for discriminating high-stability SMEs. In the early stage of establishment, the funding capacity (diversification of funding methods, capital structure and capital cost which taking into account profitability) is an important variable in financial stability. However, we concluded that technology development infrastructure, which enables continuous performance as the age of company increase, becomes an important variable affecting financial stability. The classification accuracy of the model according to the age of company and industry is 71~91%, and it is confirmed that it is possible to identify high-stability SMEs by using technology appraisal items.

Analysis of Finnish Education-related Research Trends in Korean Journals : A Network Text Analysis (핀란드 교육 관련 연구 동향분석 : 네트워크 텍스트 분석을 중심으로)

  • Kim YoungHwan;Kim YoungMin;Kim Hyunsoo;Noh Jihwa;Murphy Odo Dennis;Park Changun;Kim EunJi;Bae JinHee;Shon Mi;Chung JuHun;Lee ChaeYoung
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.4 no.1
    • /
    • pp.85-111
    • /
    • 2024
  • Since the release of the 2000 PISA results, Finland's education has consistently been regarded as a competitor or benchmark for South Korea's educational system. However, recent indicators of division, opposition, and discontent within our educational sphere suggest a considerable departure from Finland's ethos of happiness in education. Against this backdrop, this study aims to analyze the trends in Finnish education-related research appearing in Korean academic journals. Utilizing network text analysis, we examined 160 papers indexed in RISS with titles containing "Finland" and "education". Key findings are as follows. Firstly, research on Finnish education has been steadily increasing, albeit showing recent signs of decline. Secondly, the majority of research topics were micro-level, with literature review-based methodologies predominating. Thirdly, a minority of researchers accounted for one-third of the total research output. Fourthly, countries compared with Finland predominantly included neoliberal states such as Japan, the United States, the United Kingdom, Australia, and Singapore. Fifthly, research themes and subjects primarily focused on primary and secondary education, particularly in domains such as mathematics and science, influenced by PISA. Future research on Finnish education should transcend localized and fragmented areas of inquiry, undertaking comprehensive investigations into the processes and history of Finland's happiness-oriented education. Such endeavors are essential for deriving insights crucial for our learning. Particularly, consideration should be given to moving beyond literature-based methodologies, fostering international collaborative discussions facilitated online, and linking the Finnish education community with educators, parents, students, local councils, and governmental stakeholders to collectively discuss and research.

The narrative inquiry on Korean Language Learners' Korean proficiency and Academic adjustment in College Life (학문 목적 한국어 학습자의 한국어 능력과 학업 적응에 관한 연구)

  • Cheong Yeun Sook
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.4 no.1
    • /
    • pp.57-83
    • /
    • 2024
  • This study aimed to investigate the impact of scores on the Test of Proficiency in Korean (TOPIK) among foreign exchange students on academic adaptation. Recruited students, approved by the Institutional Review Board (IRB), totaled seven, and their interview contents were analyzed using a comprehensive analysis procedure based on pragmatic eclecticism (Lee, Kim, 2014), utilizing six stages. As a result, factors influencing academic adaptation of Korean language learners for academic purposes were categorized into three dimensions: academic, daily life, and psychological-emotional aspects. On the academic front, interviewees pointed out difficulties in adapting to specialized terminology and studying in their majors, as well as experiencing significant challenges with Chinese characters and Sino-Korean words. Next, from a daily life perspective, even participants holding advanced TOPIK scores faced difficulties in adapting to university life, emphasizing the necessity of practical expressions and extensive vocabulary for proper adjustment to Korean life. Lastly, within the psychological-emotional dimension, despite being advanced TOPIK holders, they were found to experience considerable stress in conversations or presentations with Koreans. Their lack of knowledge in social-cultural and everyday life culture also led to linguistic errors and contributed to psychological-emotional difficulties, despite proficiency in Korean. Based on these narratives, the conclusion was reached that in order to promote the academic adaptation of Korean language learners, it is essential to provide opportunities for Korean language learning. With this goal in mind, efforts should be directed towards enhancing learners' academic proficiency in their majors, improving Korean language fluency, and fostering interpersonal relationships within the academic community. Furthermore, the researchers suggested as a solution to implement various extracurricular activities tailored for foreign learners.

Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream - (하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 -)

  • An, Seonggi;Lee, Chanjoo;Kim, Yongmin;Choi, Hun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.321-332
    • /
    • 2024
  • Understanding the status of surface cover in riparian zones is essential for river management and flood disaster prevention. Traditional survey methods rely on expert interpretation of vegetation through vegetation mapping or indices. However, these methods are limited by their ability to accurately reflect dynamically changing river environments. Against this backdrop, this study utilized satellite imagery to apply the Random Forest method to assess the distribution of vegetation in rivers over multiple years, focusing on the Naeseong Stream as a case study. Remote sensing data from Sentinel-2 imagery were combined with ground truth data from the Naeseong Stream surface cover in 2016. The Random Forest machine learning algorithm was used to extract and train 1,000 samples per surface cover from ten predetermined sampling areas, followed by validation. A sensitivity analysis, annual surface cover analysis, and accuracy assessment were conducted to evaluate their applicability. The results showed an accuracy of 85.1% based on the validation data. Sensitivity analysis indicated the highest efficiency in 30 trees, 800 samples, and the downstream river section. Surface cover analysis accurately reflects the actual river environment. The accuracy analysis identified 14.9% boundary and internal errors, with high accuracy observed in six categories, excluding scattered and herbaceous vegetation. Although this study focused on a single river, applying the surface cover classification method to multiple rivers is necessary to obtain more accurate and comprehensive data.

Predicting Relationship Between Instagram Use and Psychological Variables During COVID-19 Quarantine Using Multivariate Techniques (다변량 분석 방법을 이용한 인스타그램 이용과 심리적 변인 간의 관계 예측: COVID-19로 인한 자가격리자를 중심으로)

  • Chaery Park;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.3-14
    • /
    • 2023
  • Recently, the effect of using social media on psychological well-being has been highlighted. However, studies exploring factors that may predict the quality of social media relationships are relatively rare. The present study investigated whether social media activity and psychological states, such as loneliness and depression, can predict the quality of social media relationships during the COVID-19 quarantine period using a machine learning technique. Ninety-five participants completed a self-report survey on loneliness, Instagram activity, quality of social media relationships, and depression at different time points (during the self-isolation and after the release of self-isolation). Similarity analyses, including multidimensional scaling (MDS), representational similarity analysis (RSA), and classification analyses, were conducted separately at each point in time. The results of MDS revealed that time spent on social media and depression were distinguished from others in the first dimension, and loneliness and passive use were distinguished from others in the second dimension. We divided the data into two groups based on the quality of social media relationships (high and low), and we conducted RSA on each group. Findings indicated an interaction between the quality of the social media relationships and the situation. Specifically, the effect of self-isolation on the high-quality social media relationship group is more pronounced than that on the low-quality group. The classification results also revealed that the predictors of social media relationships depend on whether or not they are isolated. Overall, the results of this study imply that social media relationship could be well predicted when people are not in isolated situations.

A study on the application of residual vector quantization for vector quantized-variational autoencoder-based foley sound generation model (벡터 양자화 변분 오토인코더 기반의 폴리 음향 생성 모델을 위한 잔여 벡터 양자화 적용 연구)

  • Seokjin Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.243-252
    • /
    • 2024
  • Among the Foley sound generation models that have recently begun to be studied, a sound generation technique using the Vector Quantized-Variational AutoEncoder (VQ-VAE) structure and generation model such as Pixelsnail are one of the important research subjects. On the other hand, in the field of deep learning-based acoustic signal compression, residual vector quantization technology is reported to be more suitable than the conventional VQ-VAE structure. Therefore, in this paper, we aim to study whether residual vector quantization technology can be effectively applied to the Foley sound generation. In order to tackle the problem, this paper applies the residual vector quantization technique to the conventional VQ-VAE-based Foley sound generation model, and in particular, derives a model that is compatible with the existing models such as Pixelsnail and does not increase computational resource consumption. In order to evaluate the model, an experiment was conducted using DCASE2023 Task7 data. The results show that the proposed model enhances about 0.3 of the Fréchet audio distance. Unfortunately, the performance enhancement was limited, which is believed to be due to the decrease in the resolution of time-frequency domains in order to do not increase consumption of the computational resources.

Study on the Expression of Sensory Visualization through AR Display Connection - Focusing on Eye Tracking (AR 디스플레이 연결을 통한 감각시각화에 대한 표현 검토)

  • Ma Xiaoyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.357-363
    • /
    • 2024
  • As AR display virtual technology enters public learning life extensively, the way in which reality and virtual connection are connected is also changing. The purpose of this paper is to study the expression between the 3D connection sensory information visualization experience and virtual reality enhancement through the visual direction sensory information visualization experience of the plane. It is analyzed by examining the basic setting method compared to the current application of AR display and flat visualization cases. The scope of this paper is to enable users to have a better experience through the relationship with sensory visualization, centering on eye tracking technology in the four categories of AR display connection design: gesture connection, eye tracking, voice connection, and sensor. Focusing on eye tracking technology through AR display interaction and current application and comparative analysis of flat visualization cases, the geometric consistency of visual figures, light and color consistency, combination of multi-sensory interaction methods, rational content display, and smart push presented sensory visualization in virtual reality more realistically and conveniently, providing a simple and convenient sensory visualization experience to the audience.