• Title/Summary/Keyword: Lean-burn engine

Search Result 106, Processing Time 0.022 seconds

Flame Visualization and Flame Characteristics of Spark Plug with Pre-ignition Chamber (예연소실 점화플러그의 화염가시화와 화염전파특성)

  • Jie, Myoung Seok;Johng, In Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.51-58
    • /
    • 2016
  • New concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber at the lower end of spark plug and flame hole, in which fresh mixture gas can be put in through the flame hole without any fuel supply system. This spark plug was tested in a single cylinder engine dynamometer for different air fuel ratio to measure the fuel consumption rate, emission gases, and MBT timing. And constant volume combustion chamber was made to understand flame characteristics of spark plug. New spark plug induced fast burn compared to the conventional spark plug and its effects were increased in lean air fuel ratio. Pre-ignition chamber spark plug with 5 holes which had adjusted size was more stable and effective in combustion performance than pre-ignition chamber spark plug with 1 hole. And its effects showed larger differences in lean air fuel ratio than stoichiometric condition. Flame kernel and flame growth process of conventional spark plug and pre-ignition chamber spark plug studied by flame visualization of schlieren method.

Modeling of Laminar Burning Velocities for Hydrocarbon and 7ethanol Fuels by Using Detailed Chemical Reaction Mechanisms (상세화학반응기구를 이용한 탄화 수소 및 메탄을 층류 화염 속도 모델링)

  • Bae, Sang-Su;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1303-1310
    • /
    • 2001
  • In order to be applicable to the combustion modelling of stratified charged combustion like that of - lean burn and GDI engine, the correlations of laminar burring velocities fur several hydrocarbon fuels and methanol are needed over a wide range of equivalence ratio, pressure and temperature. In this study, these correlations are modeled in the 1311owing form based on the experimental and Muller\`s modeling results for several fuels, where $\alpha$, ξ, and ξ are functions of pressure and temperature, $S_{L}$ =$\alpha$ exp[-ξ($\Phi$-$\Phi$$_{m}$)$^{2}$ -exp {-ζ($\Phi$-$\Phi$$_{m}$)}-ζ($\Phi$-$\Phi$$_{m}$)]. By using the results calculated by PREMIX code with Sloane\`s detailed chemical reaction mechanism for propane, it is verified that the coefficients of the abode modeling can be determined by considering laminar burning velocity data only in a range of equivalence ratio less than $\Phi$$_{m}$. Therefore, Muller\`s modeling results can be adopted leer modeling of the pressure and temperature dependency. Compared with the results of the existing Keck'and Gulder's models, those of the present one showed the good agreement of the recent experimental data, especially in the range of lean and rich sides.s.des.s.

A Development and Basic Characteristics of MCVVT Research Hydrogen Engine for Practical Use of External Mixture Hydrogen-Fueled Engine (흡기관 분사식 수소기관의 실용화를 위한 MCVVT 연구용 수소기관의 개발과 기본 특성)

  • Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.;Lee, J.H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.255-262
    • /
    • 2006
  • To develop a hydrogen fueled engine with external mixture which uses in high reliability, low cost and low pressure, the single cylinder research engine with MCVVT(Mechanical Continuous Variable Valve Timing) system is developed and its basic characteristics analyzed. The MCVVT developed has high reliability and the valve timing change is possible in wide range continuously. Though the mechanical loss due to MCVVT system is increased a little, back-fire suppression research for valve overlap period is no difficulty. It's also confirmed that the hydrogen-fueled engine has lower torque and is possible high lean burn. As fuel-air equivalence ratio is high, as thermal efficiency is remarkable increasing.

Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature (흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling (성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도)

  • Pae, Sang-Soo;Kim, Yong-Tae;Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

A Study on Turbulence Flow Characteristics at the Spark Plug Location in S.I. Engine (가솔린기관의 점화플러그 위치에서 난류유동 특성에 관한 연구)

  • 정연종;조규상;김원배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2423-2430
    • /
    • 1994
  • Several factors of the efficient combustion process are shape of combustion chamber, position of spark plug, turbulence flow and so on. the shape of combustion chamber and position of spark plug are constrained to geometrically, and then it could not make a change the shape easily. But the turlence flow in combustion chamber have a great influence on combustion phenomena, and which is much easier to control relatively. And since characteristics of turbulence flow would be very important to the stability of combustion and performances, This study is also essential to future engine-low emission and lean burn engine. This paper shows that the visualization of the turbulence flow of single cylinder engine by using 2way, $45^{\circ}$ inclined and 2 channel hot wire probe through the park plug hole. We also study the characteristics of turbulence flow by means of ensemble averaged mean velocity, turvulence intensity and integral length scale.

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-Chamber (II) Effect of Combustion Promotion with Configuration Change of the Critical Passagehole (부실식 정적연소실내 연소특성에 관한 연구 (II) 임계연락공의 형상변화에 따른 연소촉진효과)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2611-2623
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we investigated the combustion characteristics in the main chamber using a constant volume combustion chamber with subchamber. The combustion characteristics with configuration change of the critical passageholes have been studied by taking pressure data, schlieren photograph, ion current and light emission signal of flame. Heat release rate with various critical passageholes also have been analysed by using the combustion model of a prechamber diesel engine. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the geometric configurations of critical passagehole.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

A Study on Combustion and exhaust Emission Characteristics with Air Charge in Compression Ignition Diesel Engine (압축착화 디젤기관의 흡기조성에 따른 연소 및 배기배출물 특성에 대한 연구)

  • Kim, Gi-Bok;Kim, Chi-Won;Yoon, Chang-Sik;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.207-215
    • /
    • 2015
  • Since the oil shock of 1970's there was a strong upward tendency for the use of the high viscosity and poorer quality fuels. Therefore the misfiring engine occurs due to the decrease of quantity injected for lean burn and emission control in CI diesel engine. In this study, it is designed and used the test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and emission as operating parameters.

Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine (연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구)

  • Park, Yun Seo;Park, Cheol Woong;Oh, Seung Mook;Kim, Tae Young;Choi, Young;Lee, Yong Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • Nowadays, automotive manufacturers have developed various technologies to improve fuel economy and reduce harmful emissions. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of fuel and ignition. This study aims to investigate the development of a spray-guided-type lean-burn LPG direct injection engine through the redesign of the combustion system. This engine uses a central-injection-type cylinder head in which the injector is installed adjacent to the spark plug. Fuel consumption and combustion stability were estimated depending on the ignition timing and injection timing at various air-fuel ratios. The optimal injection timing and ignition timing were based on the best fuel consumption and combustion stability.