• Title/Summary/Keyword: Lean-burn engine

Search Result 106, Processing Time 0.064 seconds

A Study on the Full Load Performance and Emission Characteristics with Turbo-charger Change in a HCNG Engine (HCNG 엔진의 터보차저 변경에 따른 전부하 출력 및 배출가스 특성 연구)

  • Park, Cheolwoong;Kim, Changgi;Lim, Gihun;Lee, Sungwon;Choi, Young;Lee, Sunyoup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • Hydrogen-natural gas blends(HCNG) engine is optimizing technology of performance and emission characteristics with use of hydrogen's fast flame speed and wide flammability limit. As lean-burn limit is extended, the improvement in thermal efficiency and harmful emissions can be achieved. However, the extension of lean-burn limit under a wide open throttle operation point could be realized with the increase in boosting capacity in a lean-burn engine with turbo-charging system. In the present study, the power output characteristics of HCNG engine with turbo-charger change is assessed and feasibility of the increase in boosting capacity is evaluated. The turbo-charger design with high efficiency at higher flow rate rather than higher boosting pressure makes efficient operation possible at relatively rich mixture condition.

A Study on the Optimization of Combustion and Emission Performance in a Heavy-duty HCNG Engine (Heavy-duty HCNG엔진의 연소 및 배기성능 최적화에 관한 연구)

  • Choi, Young;Park, Chul-Woong;Won, Sang-Yeon;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • Although CNG is able to meet the current emission standards, it is expected to be impossible to satisfy the requirements of the next EURO-6 emission regulation without an additional after-treatment device. Hydrogen is known to be a gaseous fuel which features the wide flammability limit and the fast reactivity. A certain amount of hydrogen addition to CNG is able to extend the lean combustion range and produce lesser amounts of harmful emissions. In this research, the combustion and emission characteristics of HCNG(mixture of Hydrogen and CNG) fuel were experimented in an 11-liter heavy duty lean burn engine varying hydrogen contents, air-to-fuel ratio and spark timing. The optimization of this HCNG engine for a city bus was performed through the evaluations of oxidation catalyst characteristics.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber (Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

A Study on Lean Limit and Combustion Characteristics of Hydrogen Supplemented Gasoline Engine (수소첨가 가솔린기관의 희박한계 및 희박연소특성에 관한 연구)

  • Cho, Tae Hee;Kim, Chang Hyun;Lee, Jong Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.23-34
    • /
    • 1995
  • In order to realize the ultra lean burn, the method of hydrogen supplement in gasoline engine has been examined and analyzed. A small quantity of hydrogen gas was supplied and mixed with gasoline fuel in the intake manifold. As the results, lean limit was extended to fuel-air equivalence ratio 0.35 which normal combustion was impossible by gasoline fuel. The NO and CO were remarkably decreased, and thermal efficiency and torque were increased. It was also found that by considering cycle variation, emission characteristics, torque and thermal efficiency, suitable operate region of hydrogen supplemented gasoline engine was equivalence ratio 0.5.

  • PDF

A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn (희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구)

  • 전대수;이태원;윤수한;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF

Lean Operation Characteristics of a Spark Ignition Engine with Reformed Gas Addition (전기점화 엔진에서 개질가스 첨가에 의한 희박연소특성 연구)

  • Oh, Seung-Mook;Kim, Chang-Up;Kang, Kern-Yong;Choi, Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.170-177
    • /
    • 2006
  • Hydrogen can extend the lean misfire limit to a large extent when it is mixed with conventional fuels for a spark ignition engine. In this study, hydrogen-enriched gaseous fuels by reforming process were simulated according to their proportions of $H_2$, CO, $CO_2$ and $N_2$ gases. Pure hydrogen and two different hydrogen-enriched gaseous mixtures(A-, B-composition) were tested for their basic effects on the engine performances and emissions in a single cylinder research engine. A- and B-composition showed different results from 100% $H_2$ addition because air/fuel mixtures were more diluted by their additions. Even though the energy fraction of reformed gases was increased, combustion stabilities and lean misfire limits were not sensitively improved. It means that combustion augmentation by $H_2$ addition was offset by the charge dilution of $N_2$ and $CO_2$. In addition, the low flammability of CO gas deteriorated thermal efficiencies. CO emission was drastically increased with B-composition which included higher CO component. However, $NO_x$ was reduced as energy fraction($X_e$) rised except for the case of 100% $H_2$ addition at $\lambda=1.2$ and was, for A-composition, lowered to a factor of ten when compared with that of $H_2$ addition. HC emissions were largely influenced by $COV_{imep}$ due to misfire and partial burns.

Measurements of Mixture Strength Using Spark Plug (스파크 플러그를 이용한 혼합기 농도 측정)

  • 조상현;임명택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • Ion current in an S.I engine cylinder is measured with the spark plug as a probe. The peak values are confirmed to show a fair correlation with local air-fuel ration and engine speed which implies that the ion current measured at the spark plug may provide a signal for the local mixture strength which is the key parameter in precise fuel control for future engines especially of gasoline direct-injected lean burn engines.

  • PDF

A study on the effect improving in-cylinder flow on fast and lean burn in a gasoline engine (가솔린엔진의 연소실내 유동개선에 의한 급속희박 연소효과에 관한 연구)

  • 강건용;엄종호;정동수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.80-89
    • /
    • 1992
  • An experimental study of in-cylinder of flow and combustion characteristics in two gasoline engines of different intake ports which are denoted as original port and masked shroud head (MSH) ports is presented. The flows generated by the MSH and the original port are invest- igated by laser Doppler velocimeter(LDV) under steady flow and motoring (non-firing) condit -ions. Combustion characteristics with different swirl levels produced by two intake ports are analyzed by combustion pressure measurement and statistical calculation. The swirl inside the cylinder of the MSH port engine is found to be much higher than the original port, and the MSH has a large eddy motion of cylinder diameter size. Using ensemble average method to valuate engine turbulence under motoring condition, the MSH port engine is shown to have h -igher turbulence intensity than the original port, so that the effect of the MSH port on fast burn is shown. Also the cyclic variations of peak pressure and the reaching time in the MSH port are apparently reduced.

  • PDF

Effect of Enhanced Mixture Formation on the Combustion Characteristics in Gasoline Engine (가솔린 기관의 혼합기 형성 촉진이 연소 특성에 미치는 영향)

  • Lee, C.S.;Seo, Y.H.;Kim, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.56-63
    • /
    • 1995
  • In this paper, the fuel atomization effect of a spark-ignition engine on the lean burn characteristics is studied. The fuel atomization is enhanced by heating the inside of the intake manifold with electric heater. Several operating parameters including cyclic variation are expressed against the air-fuel ratio from the experimental results. The fuel atomization gives much influence on the combustion stability. As the intake manifold is heated, the combustion duration decreased and the value of COV in the lean region as well as in the theoretical equivalence ratio became smaller than of not-heated.

  • PDF